K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

Giải bài 47 trang 93 Toán 8 Tập 1 | Giải bài tập Toán 8

a)+ ABCD là hình bình hành

⇒ AD // BC và AD = BC.

⇒ ∠ADH = ∠CBK (Hai góc so le trong).

Hai tam giác vuông AHD và CKB có:

    AD = BC

    ∠ADH = ∠CBK

⇒ ΔAHD = ΔCKB (cạnh huyền, góc nhọn)

⇒ AH = CK

+ AH ⊥ BD; CK ⊥ BD ⇒ AH // CK

Tứ giác AHCK có AH // CK, AH = CK nên là hình bình hành.

b) Hình bình hành AHCK có O là trung điểm HK

⇒ O = AC ∩ HK ⇒ A, C, O thẳng hàng.

21 tháng 4 2017

a) Hai tam giác vuông AHD và CKD có:

AD = CB (gt)

= (so le trong)

Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)

Suy ra AH = CK

Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,

b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.

29 tháng 9 2017

Tham khảo thôi!

a) Hai tam giác vuông AHD và CKD có:

AD = CB (gt)

\(\widehat{D_1}\) = \(\widehat{B_1}\) (so le trong)

Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)

Suy ra AH = CK

Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,

b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.



15 tháng 11 2018

nhanh 3 k miễn phí mai nhớ cổ vũ đội bóng việt nam nha

b) Xét hai tam giác vuông AHD và CKB có:
AD=BC
góc ADB=góc DBC (so le trong).
=> tam giác AHD=tam giác CKB    (ch-gn)
=> BH=CK( hai cạnh tương ứng)
Lấy M trung điểm  BD , nên MD=MB => MD-DH=MB-BK=> MH=MK, nên M Trung điểm HK
Vì ABCD là hình bình hành nên  AC cắt BD tại trung điểm M.
Hay M là Trung điểm AC, mà M trung điểm HK.
Nên AKCH là hình bình hành.

11 tháng 12 2021

a: Xét tứ giác AMCN có 

AM//CN

AN//CM

Do đó: AMCN là hình bình hành

11 tháng 12 2021

a: Xét tứ giác AMCN có 

AM//CN

AN//CM

Do đó: AMCN là hình bình hành

9 tháng 12 2021

\(a,ABCD\text{ là hbh }\Rightarrow AB\text{//}CD;AB=CD\\ \Rightarrow EB\text{//}FD;\dfrac{1}{2}AB=\dfrac{1}{2}CD\\ \Rightarrow EB\text{//}FD;EB=FD\\ \Rightarrow EBFD\text{ là hbh}\\ b,\text{Vì }EBFD\text{ là hbh và }O\text{ là trung điểm }BD\)

\(\Rightarrow O\text{ là trung điểm }EF\)

Vậy O,E,F thẳng hàng

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

góc ADH=góc CBK

=>ΔAHD=ΔCKB

=>AH=CK

mà AH//CK

nên AHCK là hình bình hành

b: AHCK là hbh

=>AC cắt HK tại trung điểm của mỗi đường

=>A,O,C thẳng hàng