Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)+ ABCD là hình bình hành
⇒ AD // BC và AD = BC.
⇒ ∠ADH = ∠CBK (Hai góc so le trong).
Hai tam giác vuông AHD và CKB có:
AD = BC
∠ADH = ∠CBK
⇒ ΔAHD = ΔCKB (cạnh huyền, góc nhọn)
⇒ AH = CK
+ AH ⊥ BD; CK ⊥ BD ⇒ AH // CK
Tứ giác AHCK có AH // CK, AH = CK nên là hình bình hành.
b) Hình bình hành AHCK có O là trung điểm HK
⇒ O = AC ∩ HK ⇒ A, C, O thẳng hàng.
b) Xét hai tam giác vuông AHD và CKB có:
AD=BC
góc ADB=góc DBC (so le trong).
=> tam giác AHD=tam giác CKB (ch-gn)
=> BH=CK( hai cạnh tương ứng)
Lấy M trung điểm BD , nên MD=MB => MD-DH=MB-BK=> MH=MK, nên M Trung điểm HK
Vì ABCD là hình bình hành nên AC cắt BD tại trung điểm M.
Hay M là Trung điểm AC, mà M trung điểm HK.
Nên AKCH là hình bình hành.
1/
Ta có
\(ÁH\perp BD\left(gt\right);CK\perp BD\left(gt\right)\) => AH//CK (1)
Xét tg vuông ADH và tg vuông BCK có
AD//BC (cạnh đối hbh) \(\Rightarrow\widehat{ADH}=\widehat{CBK}\) (góc so le trong)
AD=BC (cạnh đối hbh)
=> tg ADH = tg BCK (Hai tg cuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=CK (2)
Từ (1) và (2) => AHCK là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
2/
Ta có
AH//CK (cmt) => AI//CF
AB//CD (cạnh đối hbh) => AF//CI
=> AICF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => AI = CF (cạnh đối hbh)
4/ Xét hbh AHCK có
AC cắt HK tại O' => O'H=O'K (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm HK
Mà O cũng là trung điểm HK
=> \(O\equiv O'\) => A; O; C thẳng hàng
5/
Xét hbh AHCK có
AC cắt HK tại O (cmt) => OA=OC
Xét hbh ABCD có
OA=OC (cmt) => OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Ta có
AICF là hbh (cmt) => FI cắt AC tại trung điểm O của AC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AC; BD; IF đồng quy
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
b: AHCK là hbh
=>AC cắt HK tại trung điểm của mỗi đường
=>A,O,C thẳng hàng
a) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AD = BC\); \(AD\) // \(BC\)
Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)
Suy ra \(AE = ED = BF = FC\)
Xét tứ giác \(EBFD\) ta có:
\(ED = FB\) (cmt)
\(ED\) // \(BF\) (do \(AD\) // \(BC\))
Suy ra \(EDFB\) là hình bình hành
b) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)
Mà \(DEBF\) là hình bình hành (gt)
Suy ra \(O\) cũng là trung điểm của \(EF\)
Suy ra \(E\), \(O\), \(F\) thẳng hàng
a) Hai tam giác vuông AHD và CKD có:
AD = CB (gt)
= (so le trong)
Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)
Suy ra AH = CK
Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,
b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.
Tham khảo thôi!
a) Hai tam giác vuông AHD và CKD có:
AD = CB (gt)
\(\widehat{D_1}\) = \(\widehat{B_1}\) (so le trong)
Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)
Suy ra AH = CK
Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,
b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.