Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm các cặp góc so le trong: P2 và Q3; P3 và Q2
b) Tìm các cặp góc trong cùng phía: P2 và Q2; P3 và Q3
c) Tìm các cặp góc đồng vị: P1 và Q2; p2 và Q1; P3 và Q4' p4 và Q3
d) Tính số đo góc P4:
Ta có: Q2 = P1 = 50o ( 2 góc đồng vị)
Mà P4 + P1 = 180o ( 2 góc kề bù)
P4 = 180o - P1
P4 = 180o - 50o = 130o
Bài 20 (Sách bài tập - tập 1 - trang 105)
Trên hình 5 người ta cho biết a // b và P1ˆ=Qˆ1=300P1^=Q^1=300
a) Viết tên một cặp góc đồng vị khác và nói rõ số đo mỗi góc
b) Viết tên một cặp góc so le trong và nói rõ số đo của mỗi góc
c) Viết tên một cặp góc trong cùng phía và nói rõ số đo mỗi góc
d) Viết tên một cặp góc ngoài cùng phía và cho biết tổng số đo hai góc đó
Ta có: a ⊥ P Q ; b ⊥ P Q (gt).
Þ a // b (vì cùng vuông góc với PQ).
Do đó: x + 75 ° = 180 ° (cặp góc trong cùng phía)
x = 180 ° − 75 ° = 105 ° .
a) Vì m // n nên x = 135\(^\circ \)( 2 góc đồng vị) ; y = 80\(^\circ \) ( 2 góc so le trong)
b)
Vì a // b nên \(\widehat {{M_1}} = 60^\circ \) ( 2 góc đồng vị)
Mà \(\widehat {{M_1}} + z = 180^\circ \) ( 2 góc kề bù) nên z = 180\(^\circ \)- 60\(^\circ \)=120\(^\circ \)
Vì a // b nên \(\widehat {{F_1}} = t\) ( 2 góc so le trong), mà \(\widehat {{F_1}} = 90^\circ \) nên t = 90\(^\circ \)
Câu 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{3b}{9}=\frac{2c}{8}=\frac{a-3b+2c}{2-9+8}=\frac{30}{1}=30\)
\(\Rightarrow\begin{cases}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{4}=30\end{cases}\)\(\Rightarrow\begin{cases}a=60\\b=90\\c=120\end{cases}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi
Vì a ⊥ P Q b ⊥ P Q nên a // b.
⇒ P M N ^ + M N Q ^ = 180 0 (2 góc trong cùng phía);
⇒ x + 75 0 = 180 0
⇒ x = 180 0 − 75 0 = 105 0
Vậy x = 105 0