Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải hệ pt sau: \(\hept{\begin{cases}-x+y=-24\\\frac{120}{x}-\frac{120}{y}=\frac{5}{6}\end{cases}}\)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Đặt \(x+1=u;y-2=v\)
Hệ trở thành \(\hept{\begin{cases}\frac{2}{u}+\frac{1}{v}=\frac{1}{3}\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{u}+\frac{2}{v}=\frac{2}{3}\left(1\right)\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được\(\frac{1}{u}=\frac{7}{15}\Leftrightarrow u=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}-1=\frac{8}{7}\)
Từ đó tính được \(y=\frac{1}{3}\)
Vậy hệ có 1 nghiệm \(\left(\frac{8}{7};\frac{1}{3}\right)\)
<=> \(\hept{\begin{cases}\frac{4}{x+1}+\frac{2}{y-2}=\frac{2}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{1}{x+1}=\frac{7}{15}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{8}{7}\\y=\frac{7}{5}\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\3x-2y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x-9y=0\\6x-4y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-5y=-5\\2x-3y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)
Vậy : Hệ có nghiệm duy nhất thỏa mãn: \(\left(x;y\right)=\left(\frac{3}{2};1\right)\)
=.= hk tốt!!
\(\hept{\begin{cases}\frac{2}{x+y}+\frac{1}{x-y}=3\\\frac{1}{x+y}-\frac{3}{x-y}=1\end{cases}}\)
Đặt: \(u=\frac{1}{x+y};v=\frac{1}{x-y}\). Ta có:
\(\hept{\begin{cases}2u+v=3\\u-3v=1\end{cases}}\)
\(\hept{\begin{cases}2u+v=3\\2u-6v=2\end{cases}}\)<=> 7v=1 => \(v=\frac{1}{7};u=\frac{10}{7}\)
\(< =>\hept{\begin{cases}\frac{1}{x+y}=\frac{10}{7}\\\frac{1}{x-y}=\frac{1}{7}\end{cases}}\) <=> \(\hept{\begin{cases}10x+10y=7\\x-y=7\end{cases}}\)<=> 10(y+7)+10y=7
<=> 20y+70=7
=> \(y=-\frac{63}{20}\); \(x=\frac{77}{20}\)
a = \(\frac{1}{x+y}\)
b = \(\frac{1}{x-y}\)
=>
\(\hept{\begin{cases}2a+b=3\\a-3b=1\end{cases}}\)
<=>
\(\hept{\begin{cases}2a+b=3\\2a-6b=2\end{cases}}\)
Trừ 2 vế PT
=> 7b = 1
=> b = 1/7
=> a = 10/7
=>
\(\hept{\begin{cases}x+y=\frac{7}{10}\\x-y=7\end{cases}}\)
<=>
\(\hept{\begin{cases}x=\frac{77}{20}\\y=-\frac{63}{20}\end{cases}}\)
Đk: x, y khác 0
Đặt: \(\frac{1}{x}=u;\frac{1}{y}=v\)
ta có hệ phương trình:
\(\hept{\begin{cases}u-v=1\\2u+4v=5\end{cases}}\)Giải u; v sau đó tìm x, y.
Cô làm tiếp nhé. \(\hept{\begin{cases}u+v=5\\uv=8-m\end{cases}\Rightarrow\hept{\begin{cases}u=5-v\\\left(5-v\right)v=8-m\left(1\right)\end{cases}}}\)
\(\left(1\right)\Rightarrow v^2-5v+8-m=0\left(2\right)\)
Để phương trình (2) có nghiệm thực thì \(\Delta\ge0\Leftrightarrow5^2-4\left(8-m\right)\ge0\Rightarrow4m-7\ge0\Rightarrow m\ge\frac{7}{4}\).
Đặt : \(\hept{\begin{cases}u=x+\frac{1}{x}\\v=y+\frac{1}{y}\end{cases}}\)Điều kiện : \(\orbr{\begin{cases}u\ge2\\u\le2\end{cases}}\)và \(\orbr{\begin{cases}v\ge2\\v\le2\end{cases}}\)
Tách : \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x\frac{1}{x}\left(x+\frac{1}{x}\right)=u^3-3u\)
Tương tự : \(y^3+\frac{1}{x^3}=v^3-3v\)
PT trên trở thành : \(\hept{\begin{cases}u+v=5\\u^3-3u+v^3-3v=15m-10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u+v=5\\\left(u+v\right)^3-3uv\left(u+v\right)-3\left(u+v\right)=15m-10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u+v=5\\uv=8-m\end{cases}}\)
Cô ơi e làm được đến đây cô làm tiếp dùm e nha