K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

Ta có \(\hept{\begin{cases}x=5+y\left(1\right)\\10+2y-my=2m^2+2\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(2-m\right)y=2m^2-8\)

hpt có nghiệm duy nhất \(\Leftrightarrow pt\left(2\right)\)có nghiệm duy nhất\(\Leftrightarrow2-m\ne0\Leftrightarrow m\ne2\)

khi đó \(\left(2\right)\Leftrightarrow y=\frac{2m^2-8}{2-m}=-2m-4\)Thay vào \(\left(1\right)\)ta có \(\left(1\right)\Leftrightarrow x=5-2m-4=1-2m\)

Vậy m\(\ne\)2 thì hpt có x,y=\(\left(1-2m;-2m-4\right)\)

Để \(2x^2-y=6\Leftrightarrow2\left(1-2m\right)^2-\left(-2m-4\right)=6\)

\(\Leftrightarrow2\left(1-4m+4m^2\right)+2m+4=6\)

\(\Leftrightarrow2-8m+8m^2+2m-2=0\)

\(\Leftrightarrow8m^2-6m=0\)

\(\Leftrightarrow2m\left(4m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{3}{4}\end{cases}}\)TM ĐK \(m\ne2\)

26 tháng 11 2023

a: Khi m=3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)

\(x+y=1-\dfrac{m^2}{m^2+2}\)

=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)

=>7m+1=2

=>7m=1

=>\(m=\dfrac{1}{7}\)

10 tháng 1 2016

a)Với m=2 thì hpt trở thành:

x-2y=5

2x-y=7

<=>

2x-4y=10

2x-y=7

<=>

-3y=3

2x-y=7

<=>

y=-1

x=3

b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)

*m2+2m+my+y+3=0

<=>y.(m+1)=-m2-2m-3

*Với m=-1 =>PT vô nghiệm

*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)

 

bí tiếp

17 tháng 5 2022

`a)` Thay `m=\sqrt{2}` vào hệ ptr có:

     `{(2x-y=\sqrt{2}+1),(x+\sqrt{2}y=2):}`

`<=>{(2\sqrt{2}x-\sqrt{2}y=2+\sqrt{2}),(x+\sqrt{2}y=2):}`

`<=>{((2\sqrt{2}+1)x=4+\sqrt{2}),(x+\sqrt{2}y=2):}`

`<=>{(x=\sqrt{2}),(\sqrt{2}+\sqrt{2}y=2):}`

`<=>{(x=\sqrt{2}),(y=\sqrt{2}-1):}`

Vậy với `m=\sqrt{2}` thì `S={\sqrt{2};\sqrt{2}-1}`

_____________________________________________________

`b)` Hệ ptr có nghiệm duy nhất

`<=>a/[a'] \ne b/[b']`

`<=>1/2 \ne m/[-1]`

`<=>m \ne [-1]/2`

17 tháng 5 2022

e bede

25 tháng 3 2020

a) \(\hept{\begin{cases}2x+my=5\\3x-y=0\end{cases}\left(1\right)}\)

Thay m=0 vào (1) \(\Rightarrow\hept{\begin{cases}2x=5\\3x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}\cdot3=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{15}{2}\end{cases}}}\)

21 tháng 11 2014

a)thay m=2 => {2x+y=1(1);x+2y=3(2)    

nhân thêm 2 vào (1) Ta có {4x+2y=2;x+2y=3

=>{4x+2y=2;3x=3

<=>{4x+2y=2;x=3

thay x=3 vào(1)=>2.2+y=1

=>y=-5
b) Để hpt có nghiệm duy nhất =>x=y

đặt x=y=a

=>{am+a=1,a+am=2m-1

=>2m-1=1

<=>m=1y2=3y3x(1)x2=3x3yy2=3y3x(1)x2=3x−>y