Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
a) Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)
Vậy: Khi m=-1 thì (x,y)=(1;4)
b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)
Ta có: \(x^2+2y^2=18\)
\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)
\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)
\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)
\(\Leftrightarrow3m^2-8m+4=0\)
\(\Leftrightarrow3m^2-2m-6m+4=0\)
\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)
\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)
a. Với `m=1`, ta có HPT: \(\left\{{}\begin{matrix}x+2y=18\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-6\\3y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=8\end{matrix}\right.\)
b. Theo đề bài `=>` \(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\\2x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx+2y=18\\x=1\\y=7\end{matrix}\right.\)
`=> m=4`
Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:
\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)
Thế vào pt đầu:
\(m.1+2.7=18\Rightarrow m=4\)
\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)
xét phương trình 2 ta được ; (m-2)(m+3)x=m+3
với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m
xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z
=>x-1=2k
=>x=2k+1
do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z
=>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn
Để hệ pt có nghiệm duy nhất khi \(3\ne\frac{2}{m}\Leftrightarrow3m\ne2\Leftrightarrow m\ne\frac{2}{3}\)
Với \(m\ne\frac{2}{3}\)hệ pt có nghiệm suy nhất
\(\hept{\begin{cases}3x+2y=m\\x+my=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2y=m\\3x+3my=9\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2-3m\right)y=m-9\\x+my=3\end{cases}}}}\)
\(\left(1\right)\Rightarrow y=\frac{m-9}{2-3m}\)
\(\left(2\right)\Rightarrow x=3-my=3-\frac{m^2-9m}{2-3m}=\frac{6-9m-m^2+9m}{2-3m}=\frac{6-m^2}{2-3m}\)
Thay vào biểu thức trên ta được :
\(\frac{18-3m^2}{2-3m}+\frac{4m-36}{2-3m}=-5\Rightarrow-18-3m^2+4m=-10+15m\)
\(\Leftrightarrow-3m^2-11m-8=0\Leftrightarrow\left(3m+8\right)\left(m+1\right)=0\Leftrightarrow m=-\frac{8}{3};m=-1\)( tmđk )
check lại hộ mình nhé =)
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
=>y=3x-1 và x+m(3x-1)=m+6
=>\(\left\{{}\begin{matrix}x+3xm-m=m+6\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(1+3m\right)=2m+6\\y=3x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+6}{3m+1}\\y=\dfrac{6m+18}{3m+1}-1=\dfrac{6m+18-3m-1}{3m+1}=\dfrac{3m+17}{3m+1}\end{matrix}\right.\)
3x-2y=-4
=>\(\dfrac{6m+18}{3m+1}-\dfrac{6m+34}{3m+1}=-4\)
=>-16/(3m+1)=-4
=>3m+1=4
=>m=1
cảm ơn bạn nha!!