K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)

\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)

Xét  \(a+b+c=0\), ta có :

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Xét \(x+y-1=0\),ta có : 

\(x=1-y\)

\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)

19 tháng 6 2022

sai

6 tháng 1 2016

thay a,b,c vào ,,,,,,,,,rút

1 tháng 7 2020

Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)

Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)

Hay \(\Delta>\left(a-c\right)^2\ge0\)

Vậy ta có điều phải chứng mình 

3 tháng 7 2020

b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?

19 tháng 9 2018

Đáp án: D

17 tháng 5 2017

Đáp án D

Hệ phương trình đối xứng loại 1 với cách đặt Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án điều kiện S 2 ≥ 4 P ⇔ S 2 - 4 P ≥ 0

22 tháng 6 2019

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình có vô số nghiệm khi hai đường thẳng trùng nhau. Nghĩa là hai đường thẳng có hệ số góc và tung độ gốc bằng nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*a = 0, a’ ≠ 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì hai đường thẳng Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 luôn luôn cắt trục hoành còn đường thẳng y = c/b song song hoặc trùng với trục hoành nên chúng luôn luôn cắt nhau.

Vậy hệ phương trình chỉ có một nghiệm duy nhất.

*a = a’ = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*b = 0, b’ ≠ 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì hai đường thẳng Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9luôn luôn cắt trục tung còn đường thẳng x = c/a song song hoặc trùng với trục tung nên chúng luôn luôn cắt nhau.

Vậy hệ phương trình chỉ có một nghiệm duy nhất.

*b = b’ = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình có vô số nghiệm