Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x,y vô hệ đã cho rồi giải hệ với nghiệm a,b là ra ak bạn
8-a=b
2+b=a
(a;b)=(5;3)
Do a 2 + 1 ≠ 0 ∀ x nên hệ phương trình trở thành:
Khi đó:
Vậy với a > (-1)/5 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x+y >0
- Để hệ phương trình có nghiệm duy nhất
\(\Leftrightarrow\dfrac{a}{1}\ne-\dfrac{1}{a}\)
\(\Leftrightarrow a^2\ne-1\) ( Luôn đúng )
Vậy mọi a thuộc R hệ phương trình luôn có 1 nghiệm duy nhất .
- Ta có : \(\left\{{}\begin{matrix}y=ax-2\\x+a\left(ax-2\right)=3\end{matrix}\right.\)
- Từ PT ( II ) => \(x+xa^2-2a=3\)
\(\Rightarrow x=\dfrac{2a+3}{a^2+1}\)
- Thay lại x vào PT ( I ) ta được : \(y=\dfrac{a\left(2a+3\right)}{a^2+1}-2\)
\(=\dfrac{2a^2+3a-2a^2-2}{a^2+1}=\dfrac{3a-2}{a^2+1}\)
Vậy ...
Lời giải:
a) $x+ay=1\Rightarrow x=1-ay$. Thay vào PT $(2)$ có:
$-a(1-ay)+y=a$
$\Leftrightarrow y(1+a^2)=2a(*)$
Vì $1+a^2\neq 0$ với mọi $a\in\mathbb{R}$ nên PT $(*)$ có nghiệm $y=\frac{2a}{a^2+1}$ duy nhất.
Kéo theo HPT ban đầu có nghiệm $(x,y)$ duy nhất với mọi $a$
b) $y=\frac{2a}{a^2+1}$ nên $x=1-ay=1-\frac{2a^2}{a^2+1}=\frac{1-a^2}{a^2+1}$
Để \(x< 1; y< 1\Leftrightarrow \left\{\begin{matrix} \frac{2a}{a^2+1}< 1\\ \frac{1-a^2}{a^2+1}< 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a< a^2+1\\ 1-a^2< a^2+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2+1-2a>0\\ 2a^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (a-1)^2>0\\ a^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a\neq 1\\ a\neq 0\end{matrix}\right.\)
Lời giải:
a) Phương trình hoành độ giao điểm:
\(-x+2=x^2\\\Rightarrow x^2=-x+2\\ \Rightarrow x^2+x-2=0\\ \Rightarrow x^2+2x-x-2=0\\ \Rightarrow x\left(x+2\right)-\left(x+2\right)=0\\ \Rightarrow\left(x+2\right)\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Thay \(x=-2\) vào \(y=x^2\), ta được: \(y=\left(-2\right)^2=4\)
Thay \(x=1\) vào \(y=x^2\), ta được: \(y=1^2=1\)
Vậy \(\left\{{}\begin{matrix}A\left(-2;4\right)\\B\left(1;1\right)\end{matrix}\right.\)
b) Theo đề bài ta có hệ phương trình: \(\left\{{}\begin{matrix}4.2+a.\left(-1\right)=b\\2-b.\left(-1\right)=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8-a=b\\2+b=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-a-b=-8\\-a+b=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-2b=-6\\-a+b=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=3\\-a+3=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=3\\a=5\end{matrix}\right.\)
Vậy a = 5, b = 3 thì hệ phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(2;-1\right)\)