K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

- Để hệ phương trình có nghiệm duy nhất

\(\Leftrightarrow\dfrac{a}{1}\ne-\dfrac{1}{a}\)

\(\Leftrightarrow a^2\ne-1\) ( Luôn đúng )

Vậy mọi a thuộc R hệ phương trình luôn có 1 nghiệm duy nhất .

- Ta có : \(\left\{{}\begin{matrix}y=ax-2\\x+a\left(ax-2\right)=3\end{matrix}\right.\)

 

- Từ PT ( II ) => \(x+xa^2-2a=3\)

\(\Rightarrow x=\dfrac{2a+3}{a^2+1}\)

- Thay lại x vào PT ( I ) ta được : \(y=\dfrac{a\left(2a+3\right)}{a^2+1}-2\)

\(=\dfrac{2a^2+3a-2a^2-2}{a^2+1}=\dfrac{3a-2}{a^2+1}\)

Vậy ...

 

27 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do a 2  + 1 ≠ 0 ∀ x nên hệ phương trình trở thành:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với a > (-1)/5 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x+y >0

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
AH
Akai Haruma
Giáo viên
28 tháng 1 2021

Lời giải:

a) $x+ay=1\Rightarrow x=1-ay$. Thay vào PT $(2)$ có:

$-a(1-ay)+y=a$

$\Leftrightarrow y(1+a^2)=2a(*)$

Vì $1+a^2\neq 0$ với mọi $a\in\mathbb{R}$ nên PT $(*)$ có nghiệm $y=\frac{2a}{a^2+1}$ duy nhất.

Kéo theo HPT ban đầu có nghiệm $(x,y)$ duy nhất với mọi $a$

b) $y=\frac{2a}{a^2+1}$ nên $x=1-ay=1-\frac{2a^2}{a^2+1}=\frac{1-a^2}{a^2+1}$

Để \(x< 1; y< 1\Leftrightarrow \left\{\begin{matrix} \frac{2a}{a^2+1}< 1\\ \frac{1-a^2}{a^2+1}< 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a< a^2+1\\ 1-a^2< a^2+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2+1-2a>0\\ 2a^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (a-1)^2>0\\ a^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a\neq 1\\ a\neq 0\end{matrix}\right.\)

 

20 tháng 7 2015

6x+ay=6, 2ax+by=3

Thay a=b=1 vào hệ phương trình ta có 6x+y=6, 2x+y=3

6x+y-(2x+y)=6-3

4x=3

x=3/4

y=6-6.3/4=3/2

Vì hệ có nghiệm x=1,y=5 nên ta có 6.1+a.5=6 và 2a+5b=3

a.5=0

a=0

Thay a=0 vào 2a+5b=3 ta có 0+5b=3 =>b=3/5