K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

nếu m khác -1 thì \(x=\frac{x-2}{m+1};y=\frac{3m}{m+1}\)

\(m=1-\frac{3}{m+1};y=3-\frac{3}{m+1}\)

để x,y thuộc Z thì m+1 thuộc Ư(3)

<=> m={-4;-2;0;2}

22 tháng 7 2020

rút x theo m rồi giải thôi

25 tháng 7 2019

Ta có \(\Delta=m^4-8m-8\)

Để pT có nghiệm nguyên

=> \(\Delta\)là số chính phương, \(\Delta\ge0\)

\(m=1\)=> \(\Delta=-15\)loại

\(m=2\)=> \(\Delta=-8\)loại

\(m=3\)=> \(\Delta=49\)

=> \(x=8;x=1\)nhận

+ m=4 => \(\Delta=216\)loại

\(m\ge5\)

=> \(2m^2-8m-9>0\)

=> \(\left(m^2-1\right)^2< m^4-8m-8\)

Mà \(-8m-8< 0\)với \(m\inℤ^+\)

=> \(\left(m^2-1\right)^2< m^4-8m-8< \left(m^2\right)^2\)

Lại có \(m^4-8m-8\)là số chính phương

=> không có giá trị nào của m thỏa mãn

Vậy m=3

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

8 tháng 7 2016

\(hpt\Leftrightarrow\hept{\begin{cases}m\left(m+1\right)x+2my=4m-2m^2\\\left(2-m\right)x+my=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+2m-2\right)x=-2m^2+4m-1\\\left(2-m\right)x+my=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2m^2+4m-1}{m^2+2m-2}\\y=\frac{1-\left(2-m\right)x}{m}\end{cases}}\)

14 tháng 11 2021

\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\left(1\right)\\m^2x-y=m^2-3m\end{matrix}\right.\)

\(\Rightarrow\left(m^2+2m+1\right)x=m^2-m-2\)

\(\Rightarrow x=\dfrac{m^2-m-2}{m^2+2m+1}\left(m\ne-1\right)\)

\(\Rightarrow x=1+\dfrac{-3m-3}{m^2+2m+1}=1+\dfrac{-3\left(m+1\right)}{\left(m+1\right)^2}=1+\dfrac{-3}{m+1}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow y=2m-2-\left(2m+1\right)\left(1-\dfrac{3}{m+1}\right)\)

\(\Rightarrow y=\dfrac{3m}{m+1}=3+\dfrac{-1}{m+1}\)

\(\Rightarrow x,y\in Z\left(m\in Z\right)\Leftrightarrow\left\{{}\begin{matrix}m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\m+1\inƯ\left(1\right)=\left\{\pm1\right\}\end{matrix}\right.\)

\(\Rightarrow m+1=\pm1\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)