Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left\{{}\begin{matrix}mx+y=7\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\2x-7+mx=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\x=\dfrac{11-mx}{2}\end{matrix}\right.\)
\(\Rightarrow P=x^2+y^2=\dfrac{\left(11-mx\right)^2}{4}+\left(7-mx\right)^2\)
\(=\dfrac{121-22mx+m^2x^2}{4}+49-14mx+m^2x^2\)
\(=\dfrac{5m^2x^2-78mx+317}{4}\)
\(=\dfrac{5m^2x^2-2.\sqrt{5}mx+\dfrac{78}{2\sqrt{5}}+\dfrac{1521}{5}+\dfrac{64}{5}}{4}\)
\(=\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\)
ta có : \(P\) nhỏ nhất khi \(\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\) nhỏ nhất
\(\Leftrightarrow\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\) nhỏ nhấtta có : \(\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\ge\dfrac{64}{5}\forall mx\)
khi \(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}=0\Leftrightarrow m=\dfrac{39}{5x}\)
khi đó ta có : \(P=\dfrac{\dfrac{64}{5}}{4}=\dfrac{16}{5}\)
vậy .............................................................................................
\(\Leftrightarrow\left\{{}\begin{matrix}mx-2x=7+4=11\\2x-y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m-2\right)=11\\y=2x+4\end{matrix}\right.\)
Nếu m=2 thì hệ vônghiệm
Nếu m<>2 thì hệ có nghiệm duy nhất là: \(\left\{{}\begin{matrix}x=\dfrac{11}{m-2}\\y=\dfrac{22}{m-2}+4=\dfrac{22+4m-8}{m-2}=\dfrac{4m-14}{m-2}\end{matrix}\right.\)
\(P=x^2+y^2\)
\(=\dfrac{121}{\left(m-2\right)^2}+\dfrac{\left(4m-14\right)^2}{\left(m-2\right)^2}\)
\(=\dfrac{16m^2-112m+196+121}{\left(m-2\right)^2}\)
\(=\dfrac{16m^2-112m+317}{m^2-4m+4}\)
Để P min thì 11/m-2=4m-14/m-2
=>4m-14=11
=>4m=25
=>m=25/4
\(\left(I\right)\left\{{}\begin{matrix}mx+y=7\left(1\right)\\2x-y=-4\left(2\right)\end{matrix}\right.\)
Từ (2) ta được \(y=2x+4\)
Thay \(y=2x+4\) vào (1) ta có:
\(mx+2x+4=7\Leftrightarrow\left(m+2\right)x=3\)
⇒ \(x=\dfrac{3}{m+2}\)
P = \(x^2 + y^2\)= \(x^2+(2x+4)^2=x^2+4x^2+16x+16\)
P= \(5x^2+16x+16=5\bigg(x^2+\dfrac{16}{5}x\bigg)+16\)
P= \(5\bigg(x^2+2. \dfrac{8}{5}x+( \dfrac {8}{5})^2 - \big( \dfrac {8}{5} \big)^2\bigg)+16\)
P= \(5\bigg(x+ \dfrac{8}{5}\bigg)^2+16-5. \bigg(\dfrac{8}{5}\bigg)^2=5\bigg( x+ \dfrac{8}{5}\bigg)^2+ \dfrac{16}{5}\) \(\ge\dfrac{16}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\dfrac{8}{5}=0\Leftrightarrow x=\dfrac{-8}{5}\)
⇒ \(\dfrac{3}{m+2}=-\dfrac{8}{5}\Rightarrow m=-\dfrac{31}{8}\)
Vậy \(m=-\dfrac{31}{8} \) thì \(P_{min}=\dfrac{16}{5}\)
\(\left\{{}\begin{matrix}mx+y=7\\2x-y=-4\end{matrix}\right.\left(1\right)\)
Ta có: \(2x-y=-4\)
\(\Rightarrow y=2x+4\)
\(P=x^2+y^2=x^2+\left(2x+4\right)^2=x^2+4x^2+16x+16\)
\(P=5x^2+16x+16=5\left(x^2+2.\frac{8}{5}x+\frac{64}{25}\right)+\frac{16}{5}\)
\(P=5\left(x+\frac{8}{5}\right)^2+\frac{16}{5}\)
Do: \(\left(x+\frac{8}{5}\right)^2\ge0\Rightarrow5\left(x+\frac{8}{5}\right)^2+\frac{16}{5}\ge\frac{16}{5}\)
\(P_{Min}=\frac{16}{5}\Leftrightarrow x=-\frac{8}{5}\) Mà: \(y=2x+4\Rightarrow y=\frac{4}{5}\)
Thay \(x,y\) vào phương trình đề cho ta được:
\(m\left(-\frac{8}{5}\right)+\frac{4}{5}=7\)
\(\Leftrightarrow m=-\frac{31}{8}\)
Vậy nếu \(m=-\frac{31}{8}\) thì \(P\) đạt \(Min=\frac{16}{5}\)