K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

$\begin{cases}x+my=m+1\\y+mx=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y+m(m+1-my)=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y-my^2+m^2+m=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y(m^2-1)=m^2-2m+1\\\end{cases}$
Để HPT có nghiệm duy nhất thì $m^2-1 \neq 0\\\Leftrightarrow m \ne \pm1$
$\Leftrightarrow\begin{cases}y=\dfrac{(m-1)^2}{(m-1)(m+1)}=\dfrac{m-1}{m+1}\\x=m+1-my=\dfrac{(m+1)^2-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\\end{cases}$
$\Rightarrow xy=\dfrac{(3m+1)(m-1)}{(m+1)^2}$
$=\dfrac{3m^2-2m-1}{(m+1)^2}$
Xét $xy+1$
$=\dfrac{3m^2-2m-1+m^2+2m+1}{(m+1)^2}$
$=\dfrac{4m^2}{(m+1)^2} \ge 0$
$\Rightarrow xy \ge -1$
Dấu "=" xảy ra khi $m=0$
Vậy m=0 thì HPT có nghiệm duy nhất và $min_{xy}=-1$

Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Tới đây bạn tự làm tiếp nhé

12 tháng 2 2022

a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)

Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)

\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)

Dấu''='' xảy ra khi m =2 

Vậy ...

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

AH
Akai Haruma
Giáo viên
22 tháng 5 2018

Lời giải:

\(\left\{\begin{matrix} (m+1)x-y=m+1\\ x+(m-1)y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (m+1)x-y=m+1\\ x(m+1)+(m^2-1)y=2(m+1)\end{matrix}\right.\)

Lấy PT(2)- PT(1):

\(\Rightarrow m^2y=m+1\)

Hiển nhiên \(m\neq 0\Rightarrow y=\frac{m+1}{m^2}\)

Thay vào \(x+(m-1)y=2\) suy ra \(x=1+\frac{1}{m^2}\)

Do đó hpt luôn có nghiệm duy nhất \((x,y)=\left(1+\frac{1}{m^2}, \frac{m+1}{m^2}\right)\) với mọi $m\neq 0$

Khi đó:

\(x+y=1+\frac{2}{m^2}+\frac{1}{m}=\left(\frac{\sqrt{2}}{m}+\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\geq \frac{7}{8}\)

Để đạt được min \(=\frac{7}{8}\) thì \(\frac{\sqrt{2}}{m}+\frac{1}{2\sqrt{2}}=0\Leftrightarrow m=-4\)

22 tháng 1 2022

a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)

 Khi \(m=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)

Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)

Vậy...

Để phương trình có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(m-1\ne2m\)

=>\(m\ne-1\)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-2xm+m^2+5m=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-m^2-2m-1=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\cdot\left(-1\right)\cdot\left(m+1\right)=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2=24\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2=24\)

=>\(m^2+2m+1-m^2+6m-9=24\)

=>8m-8=24

=>m=4(nhận)

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(2m\ne m-1\)

=>\(m\ne-1\)(1)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m-1\right)-2mx+m^2+5m-3m+1=0\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(-m-1\right)+m^2+2m+1=0\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m+1\right)=\left(m+1\right)^2\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2< 4\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)

=>\(m^2+2m+1-m^2+6m-9< 4\)

=>8m-8<4

=>8m<12

=>\(m< \dfrac{3}{2}\)

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)