Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+m\le0\\-x+5< 0\end{cases}\hept{\begin{cases}x\le-m\\x< -5\end{cases}\hept{\begin{cases}x\in\left(-\infty;-m\right)\\x\in\left(-\infty;-5\right)\end{cases}}}}\)bạn sửa lại chỗ trên nha là nửa khoảng
\(+-m\ge-5\)
\(m\le5< =>\)tập nghiệm của HPT \(S=\left(-m;-\infty\right)\)
\(+-m< 5\)
\(m>5< =>\)tập nghiệm của HPT \(S=\left\{-\infty;-5\right\}\)
Chọn D.
Với m = 1 hệ bất phương trình trở thành:
Vậy tập nghiệm hệ bất phương trình là
Ta có: ( 1 ) ⇔ x ≤ - m . Tập nghiệm của (1) là ( - ∞ ; - m ] .
( 2 ) ⇔ x > 5 . Tập nghiệm của (2) là 5 ; + ∞ .
Hệ đã cho có nghiệm khi và chỉ khi ( - ∞ ; - m ] ∩ 5 ; + ∞ . Điều này xảy ra khi và chỉ khi 5 < - m ⇔ m < - 5 .
Đáp án là A.
\(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x< m+2\end{matrix}\right.\)
Hệ có nghiệm khi \(m+2>\dfrac{1}{2}\Rightarrow m>-\dfrac{3}{2}\)
1.
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
Chọn B.
Xét hệ bất phương trình:
Để hệ bất phương trình có nghiệm thì 5 < -m ⇔ m > -5.