Cho hcn ABCD có AH vuông góc với BD ( H ∈ BD)

a) Cm △...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

Hình bạn tự vẽ nha

xét hcn ABCD có AB//CD

=>\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)

=>\(\widehat{ABD}=\widehat{BDC}\)(2 góc ở vị trí so le trong)

=>\(\widehat{ABH}=\widehat{BDC} \) (H∈BD)

xét △AHB và △ BCD

có \(\widehat{C}=\widehat{AHB}=90\)

\(\widehat{ABH}=\widehat{BDC} \)(cmt)

=>△AHB ∼ △ BCD (g-g)

b) xét △AHD và  △BAD có

\(\widehat{D} chung \)

\(\widehat{A}=\widehat{H}=90\)

△AHD ∼ △BAD (gg)

=>\(\dfrac{AD}{BD}=\dfrac{HD}{AD}(tsđd)\)

=>AD2=BD.HD

 

 

 

 

 

 

 

 

13 tháng 5 2021

giải giúp mih câu c của bài đó;

c. tia phân giác của góc adb cắt ab lần lượt tại m và k chứng minh akbình =bh . hm

 

29 tháng 4 2016

Áp dụng công thức mà làm nhé!

5 tháng 6 2020

A B C D H 8cm 6cm

                      Giải

a) Xét\(\Delta AHB\)\(\Delta BCD\)có:

        \(\widehat{AHB}=\widehat{BCD}=90^o\)

       \(\widehat{ABH}=\widehat{BDC}\) (so le trong)

    =>\(\Delta AHB~\Delta BCD\) (g.g)

b) Xét\(\Delta AHD\)\(\Delta AHB\)có:

        \(\widehat{AHD}=\widehat{BHA}=90^o\)

        \(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))

 =>\(\Delta AHD~\Delta AHB\) (g.g)

Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)

Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)

c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:

            \(BD^2=BC^2+DC^2\)

            \(BD^2=6^2+8^2\)   

           \(BD^2=36+64\)

           \(BD=\sqrt{100}=10\left(cm,BD>0\right)\)

  Xét tam giác vuông ABD có:

     \(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)

 Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:

        \(AB^2=AH^2+HB^2\)

        \(8^2=4,8^2+HB^2\)

        \(HB^2=8^2-4,8^2\)

        \(HB^2=40,96\)

        \(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)

=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)

Còn HC bn tự tính nhé!

 #hoktot<3# 

    

            

a) Xét ΔAHB và ΔBCD có

\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)

\(\widehat{ABH}=\widehat{BDC}\)(so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔAHD và ΔBAD có

\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)

\(\widehat{ADB}\) chung

Do đó: ΔAHD\(\sim\)ΔBAD(g-g)

\(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}=k\)(tỉ số đồng dạng)

hay \(AD^2=HD\cdot BD\)

\(AD^2=DH\cdot DB\)(đpcm)

c) Ta có: BC=AD(hai cạnh đối trong hình chữ nhật ABCD)

mà BC=6cm

nên AD=6cm

Áp dụng định lí pytago vào ΔADB vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

hay \(BD^2=6^2+8^2=100\)

\(BD=\sqrt{100}=10cm\)

Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

nên \(\frac{6}{10}=\frac{HD}{6}\)

\(HD=\frac{6\cdot6}{10}=\frac{36}{10}=3,6cm\)

Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

nên \(\frac{3,6}{6}=\frac{AH}{8}\)

\(AH=\frac{3,6\cdot8}{6}=\frac{28,8}{6}=4,8cm\)

Vậy: HD=3,6cm và AH=4,8cm

d) Ta có: \(\frac{1}{AH^2}=\frac{1}{\left(4,8\right)^2}=\frac{1}{23,04}=\frac{25}{576}\)(1)

Ta có: \(\frac{1}{AB^2}+\frac{1}{AD^2}=\frac{1}{8^2}+\frac{1}{6^2}=\frac{1}{64}+\frac{1}{36}\)

\(=\frac{9}{576}+\frac{16}{576}=\frac{25}{576}\)(2)

Từ (1) và (2) suy ra \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\)(đpcm)

23 tháng 5 2020

Ko sao cả. Bạn làm giúp mik là ok rồi! yeu

8 tháng 5 2017

a. Xét tam giác AHB và tam giác BCD có:

^H=^C (=90)

^ABD = ^BDC ( vị trí so le trong của AB//CD)

--> tg AHB đd tg BCD (g.g)(1)

b. tg BCD có ^C =90

--> BD2-BC2=DC2

-->BD2 = DC2+ BC2

-->BD2= 82 + 62

--> BD = 10 

Từ (1)--> AH/BC = AB/BD

--> AH= BC + AB/BD

--> AH= 6+8/10

--> AH= 1,4(cm)

c. Xét tg ADB và tg HDA có:

^A =^H (=90)

^D chung

--> 2 tg đó bằng nhau

--> AD/HD = DB/DA

--> AD=DH.DB

d.Tự lm nhé. 

9 tháng 5 2017

mk đang cần phần d mà!

28 tháng 5 2018

A D B C H

a) Xét tam giác ABD vuông tại A theo định lý pitago ta có

BD2=AB2+AD2

Thay AB= 6cm AD=BC=8cm ta được

BD2=62+86

BD=10 cm

Vậy BD=10cm

b) Xét tam giác ADH và tam giác BDA có

AHD =BAD=90 độ

D chung

do đó tg ADH ~ tg BDA

c) tg ADH ~ tg BDA (gg)

=> AD/BD = DH/DA hay AD2=DH.BD

d) Ta có AB//DC (ABCD là hcn)

=>góc ABD=góc CDB hay góc ABH = góc CDB

Xét tam giác AHB và Tam giác BCD có

C= BHA =90 độ

góc ABH = góc CDB(cmt)

do đó tg ABH ~ tg CDB (gg)

29 tháng 5 2018

Cho tam giác ABC , các đường cao BD,CE cắt nhau tại H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K . Gọi M là trung điểm của BC 
a) Chứng minh tam giác ADB~tam giác AEC
b) Chứng minh HE.HC=HD.HB
c) Chứng minh H,K,M thẳng hàng 
Tam giác ABC phải co điều kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?

10 tháng 5 2017

mik cần câu c thôi