K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 9 2017

Lời giải:

Ta chứng minh bổ đề sau: với tam giác $ABC$ có $G$ là trọng tâm tam giác thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Thật vậy:

Kéo dài $AG$ cắt $BC$ tại $G'$. Theo tính chất trọng tâm suy ra \(\overrightarrow{GA}+2\overrightarrow{GA'}=0\)

\(\left\{\begin{matrix} \overrightarrow{GA'}=\overrightarrow{GB}+\overrightarrow{BA'}\\ \overrightarrow{GA'}=\overrightarrow{GC}+\overrightarrow{CA'}\end{matrix}\right.\Rightarrow 2\overrightarrow{GA'}=\overrightarrow{GB}+\overrightarrow{GC}+(\overrightarrow{BA'}+\overrightarrow{CA'})=\overrightarrow{GB}+\overrightarrow{GC}\)

Do đó, \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)

Áp dụng vào bài toán, ta có:
\(\left\{\begin{matrix} \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\\ \overrightarrow{HA}+\overrightarrow{HD}+\overrightarrow{HC}=\overrightarrow{0}\end{matrix}\right.\)

\(\Rightarrow X=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}+\overrightarrow{HA}+\overrightarrow{HC}+\overrightarrow{HD}+\overrightarrow{HB}=\overrightarrow{GD}+\overrightarrow{HB}\)

\(\Leftrightarrow X=\overrightarrow{GB}+\overrightarrow{BD}+\overrightarrow{HD}+\overrightarrow{DB}=\overrightarrow{HD}+\overrightarrow{GB}\)

Gọi \(T'\) là trung điểm của $AC$ thì $D,H,T'$ thẳng hàng và $B,G,T'$ thẳng hàng hay cả $6$ điểm thẳng hàng

Do đó \(\overrightarrow{HD},\overrightarrow{GB}\) là hai vector cùng phương, ngược hướng (theo chiều vẽ)

Mặt khác dễ thấy tam giác $ADC$ và $CBA$ là hai tam giác bằng nhau, lại có hai trọng tâm lần lượt là \(H,G\) nên \(DH=BG\)

Như vậy. \(\overrightarrow{HD}=-\overrightarrow{GB}\Leftrightarrow \overrightarrow{HD}+\overrightarrow{GB}=\overrightarrow{0}\Leftrightarrow X=\overrightarrow{0}\)

Ta có đpcm.

4 tháng 9 2017

A' ở đâu vậy bạn?

17 tháng 9 2021

6 tháng 10 2020

mk bận đi ch nên chỉ tạm câu a nha 

vẽ 3 đường trung tuyến AD ; BE ; CF 

VT = 

\(GA+GB+GC\)   ( nhớ thêm dấu vec tơ nha ) 

\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)  

\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\)     ( quy tắc hình bình hành ) 

\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\) 

\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)    

\(=0=VP\)

6 tháng 10 2020

.... chua hoc

22 tháng 10 2023

a: Gọi M là trung điểm của AB

Xét ΔABC có

G là trọng tâm

M là trung điểm của AB

Do đó: CG=2/3CM

=>CG=2GM

=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)

\(=2\overrightarrow{GM}+\overrightarrow{GC}\)

\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)

b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3\cdot\overrightarrow{MG}\)

3 tháng 9 2019

Ta có \(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\hept{\begin{cases}I\in AB\\\overrightarrow{AI}=2\overrightarrow{AB}\end{cases}}\). Tương tự \(\hept{\begin{cases}J\in\left[AC\right]\\\overrightarrow{AJ}=\frac{AJ}{AC}\overrightarrow{AC}=\frac{2}{5}\overrightarrow{AC}\end{cases}}\)

Do đó \(\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)(đpcm).

4 tháng 9 2019

giải giúp t câu này nha : tính vecto IG theo vecto AB và vecto AC  (các b vẽ hình ra hộ t nhé)