Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x_A}{x_B}=\frac{2}{7}\Rightarrow x_A=\frac{2x_B}{7}\)
Thay vào pt 2 đường thẳng ta được:
\(\left\{{}\begin{matrix}y_B-6=\frac{2x_B}{7}+2\\y_B=x_B-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=14\\y_B=12\end{matrix}\right.\) \(\Rightarrow B\left(14;12\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_A=\frac{2}{7}x_B=4\\y_A=y_B-6=6\end{matrix}\right.\) \(\Rightarrow A\left(4;6\right)\)
6/ Phương trình đường thẳng thiếu, chắc nó là \(y=mx-2m-1\)
Gọi tọa độ điểm cố định là \(M\left(x_0;y_0\right)\)
\(\Rightarrow y_0=mx_0-2m-1\) \(\forall m\)
\(\Leftrightarrow m\left(x_0-2\right)-\left(y_0+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=-1\end{matrix}\right.\) \(\Rightarrow M\left(2;-1\right)\)
b/ Để (d) cắt 2 trục tại 2 điểm pb \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\frac{1}{2}\end{matrix}\right.\)
Tọa độ A: \(y=0\Rightarrow x=\frac{2m+1}{m}\Rightarrow A\left(\frac{2m+1}{m};0\right)\Rightarrow OA=\left|\frac{2m+1}{m}\right|\)
Tọa độ B: \(x=0\Rightarrow y=-2m-1\Rightarrow B\left(0;-2m-1\right)\Rightarrow OB=\left|2m+1\right|\)
\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left|\frac{2m+1}{m}\right|.\left|2m+1\right|=1\)
\(\Leftrightarrow\left(2m+1\right)^2=2\left|m\right|\Rightarrow\left[{}\begin{matrix}4m^2+4m+1=2m\left(m>0\right)\\4m^2+4m+1=-2m\left(m< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2+2m+1=0\left(vn\right)\\4m^2+6m+1=0\end{matrix}\right.\) \(\Rightarrow m=\frac{-3\pm\sqrt{5}}{2}\)
Gợi ý :
a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )
b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1
c) Gọi khoảng cách từ O tới (d) là OH
OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy
=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m
d) Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy
e) thay x vào có kết quả
f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3) )
Theo Cô si 4x+\frac{1}{4x}\ge24x+4x1≥2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1⇔x=41). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A≥2−x+14x+3+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A≥4−x+14x+3+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014A≥x+14x−4x+1+2014=x+1(2x−1)2+2014≥2014
Hơn nữa A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x−1=0 \Leftrightarrow x=\dfrac{1}{4}⇔x=41 .
Vậy GTNN = 2014
a: Tọa độ A là:
y=0 và mx-2m-1=0
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m}\\y=0\end{matrix}\right.\)
Tọa độ B là:
x=0 và y=m*0-2m-1=-2m-1
b: A(2m+1/m;0); O(0;0); B(0;-2m-1)
=>OA=|2m+1|/|m|;OB=|2m+1|
Theo đề, ta có: \(\dfrac{1}{2}\cdot OA\cdot OB=2\)
=>(2m+1)^2/|m|=4
TH1: m>0
=>4m^2+4m+1=4m
=>4m^2+1=0(loại)
TH2: m<0
=>4m^2+4m+1=-4m
=>4m^2+8m+1=0
=>\(\left[{}\begin{matrix}m=\dfrac{-2+\sqrt{3}}{2}\\m=\dfrac{-2-\sqrt{3}}{2}\end{matrix}\right.\)
c: \(h\left(O;d\right)=\dfrac{\left|0\cdot m+0\cdot\left(-1\right)-2m-1\right|}{\sqrt{m^2+1}}=\dfrac{\left|2m+1\right|}{\sqrt{m^2+1}}\)