Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ A là;
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{m+1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\dfrac{3}{\left|m+1\right|}\)
Tọa độ B là:
x=0 và y=(m+1)*0+3=3
=>OB=3
SOAB=9
=>1/2*OA*OB=9
=>1/2*9/|m+1|=9
=>1/2*1/|m+1|=1
=>1/|m+1|=2
=>|m+1|=1/2
=>m+1=1/2 hoặc m+1=-1/2
=>m=-1/2 hoặc m=-3/2
d ∩ O y = B x B = 0 ⇒ y B = 4 ⇔ B 0 ; 4 ⇒ O B = 4 = 4 d ∩ O x = A y A = 0 ⇔ m 2 – 2 m + 2 x A + 4 = 0 x A = x A = − 4 m 2 − 2 m + 2 ⇒ A − 4 m 2 − 2 m + 2 ; 0 ⇒ O A − 4 m 2 − 2 m + 2
\ S Δ A O B = 1 2 O A . O B = 1 2 .4. − 4 m 2 − 2 m + 2 = 8 m − 1 2 + 1
Ta có m – 1 2 + 1 ≥ 1 ∀ m
Do đó S Δ A O B = 8 m − 1 2 + 1 ≤ 8 1 = 8
Dấu “=” xảy ra khi m – 1 = 0 ⇔ m = 1
Hay tam giác OAB có diện tích lớn nhất là 8 khi m = 1
Đáp án cần chọn là: A
a: Thay x=3 và y=8 vào (d), ta được:
3(m-1)+2m-1=8
=>5m-4=8
=>5m=12
=>m=12/5
b: Tọa độ A là:
y=0 và x=(-2m+1)/(m-1)
=>OA=|2m-1/m-1|
Tọa độ B là:\
x=0 và y=2m-1
=>OB=|2m-1|
Để ΔOAB vuông cân tại O thì OA=OB
=>|2m-1|(1/|m-1|-1)=0
=>m=1/2 hoặc m=2 hoặc m=0
\(a,m=3\Leftrightarrow y=f\left(x\right)=x+2\)
\(b,\) PT giao Ox: \(y=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)
PT giao Oy: \(x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)
Vậy \(S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\left(đvdt\right)\)
1: Bạn bổ sung đề bài đi bạn
2: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)
=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)
=>OB=4
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{4}{\left|2m-1\right|}=4\)
=>\(\dfrac{1}{\left|2m-1\right|}=1\)
=>\(\left|2m-1\right|=1\)
=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
Bạn tự vẽ hình nha.
Vì đường thẳng d lần lượt cắt Ox, Oy tại A, B nên A\(\left(\dfrac{-4}{m^2-2m+2};0\right)\); B\(\left(0;4\right)\)
Suy ra OA = \(\dfrac{4}{m^2-2m+2}\); OB = 4
ĐỂ diện tích tam giác AOB lớn nhất thì :
\(\dfrac{1}{2}.OA.OB=\dfrac{1}{2}.\dfrac{4}{m^2-2m+2}.4=\dfrac{8}{m^2-2m+2}\)lớn nhất
Hay \(m^2-2m+2\) nhỏ nhất.
Lại có:
\(m^2-2m+2\) = \(\left(m-1\right)^2+1\ge1\forall m\)
Nên GTNN của \(m^2-2m+2\) là 1
suy ra GTLN Saob là 8 khi và chỉ khi m = 1.
Vậy khi m = 1 thì diên tích tam giác AOB đạt giá trị lớn nhất là 8.
cái chỗ Suy ra OA=..... phải là \(\dfrac{-4}{m^2-2m+2}\) chứ bạn