Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`C.x=2=>y=(2.2-3)/(2-1)=1=>Đ`
`D.x=1=>y=1^3-3=-2=>Đ`
`A.TXĐ:RR=>Đ`
`=>B.` sai
\(f\left(5\right)=-5^2+2.5=-15\)
\(f\left(-2\right)=-\left(-2\right)^2+2.\left(-2\right)=-8\)
\(f\left(2\right)=-2^2+2.2=0\)
Do \(2\in[2;+\infty)\Rightarrow\) khi \(x=2\) thì \(f\left(x\right)=\dfrac{2\sqrt{x+2}-3}{x-1}\Rightarrow f\left(2\right)=\dfrac{2\sqrt{2+2}-3}{2-1}=1\)
\(-2\in\left(-\infty;2\right)\) \(\Rightarrow\) khi \(x=-2\) thì \(f\left(x\right)=x^2-1\Rightarrow f\left(-2\right)=\left(-2\right)^2-1=3\)
\(\Rightarrow P=1+3=4\)
\(x=3\ge2\Leftrightarrow y=3+1=4\\ x=-1< 2\Leftrightarrow y=\left(-1\right)^2-2=1-2=-1\\ x=2\ge2\Leftrightarrow y=2+1=3\)
Lời giải:
Do $-3<-1$ nên:
$f(-3)=3(-3)^2-(-3)+1=31$
Do $0> -1$ nên:
$f(0)=\sqrt{0+1}-2=-1$
$\Rightarrow f(-3)+f(0)=31+(-1)=30$
\(f\left(-2\right)-f\left(1\right)=\left(-2\right)^2+2+\sqrt{2-\left(-2\right)}-\left(1^2+2+\sqrt{2-1}\right)\) \(=8-4=4\).
\(f\left(-7\right)-g\left(-7\right)=\left(-7\right)^2+2+\sqrt{2-\left(-7\right)}-\left(-2.\left(-7\right)^3-3.\left(-7\right)+5\right)=-658\)
Khi \(x=4>3\Rightarrow f\left(x\right)=2x-3\)
\(\Rightarrow f\left(4\right)=2.4-3=5\)
Với x ≥ 2 hàm số có công thức y= f(x) = x + 1.
Vậy giá trị của hàm số tại x = 3 là f(3) = 3 + 1 = 4.
Tương tự, với x < 2 hàm số có công thức y = f(y) = x2 - 2.
Vậy f(- 1) = (- 1)2 – 2 = - 1.
Tại x = 2 giá trị của hàm số là: f(2) = 2 + 1 = 3.
Trả lời: f(3) = 4; f(- 1) = - 1; f(2) = 3.