Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)
và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))
* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)
* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)
c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:
+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)
+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)
+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)
Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên
d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\); \(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)
f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)
Vậy x = 0 thì f(x) = f(2x)
a/ Với x ∈ [0;1] thì
\(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
\(+m-1=0\Leftrightarrow m=1\text{ thì }f\left(x\right)=-1<0\text{ với mọi }x\in\left[0;1\right]\)
\(+m-1>0\Leftrightarrow m>1\text{ thì }2\left(m-1\right).0-m\le2\left(m-1\right)x-m\le2\left(m-1\right).1-m\)
\(\Rightarrow f\left(x\right)\le m-2\text{ với mọi }x\in\left[0;1\right]\)
Để f(x) < 0 thì m - 2 < 0 <=> m < 2.
Vậy 1 < m < 2.
\(+m-1<0\)\(\Leftrightarrow m<1\)thì \(2\left(m-1\right).1-m\le f\left(x\right)\le2\left(m-1\right).0-m\)
\(\Rightarrow f\left(x\right)\le-m\text{ với mọi }x\in\left[0;1\right]\)
Để f(x) < 0 thì -m < 0 <=> m > 0
Vậy 0 < m < 1.
Kết luận: \(m\in\left(0;2\right)\)
b/ đồ thị hàm số cắt trục hoành tại 1 điểm thuộc (1;2) <=> f(x) có 1 nghiệm trong khoảng (1;2)
Với x ∈ (1;2) thì \(f\left(x\right)=2\left(m-1\right)x-m\)
Xét phương trình \(2\left(m-1\right)x-m=0\)
\(+m=1\text{ thì pt thành }-1=0\text{ (vô lí)}\)
\(+\text{Xét }m\ne1.pt\Leftrightarrow x=\frac{m}{2\left(m-1\right)}\)
\(x\in\left(1;2\right)\Rightarrow2>\frac{m}{2\left(m-1\right)}>1\)
Giải bất phương trình trên để được \(\frac{4}{3}<\)\(m<2\)
Kết luận: \(m\in\left(\frac{4}{3};2\right)\)
\(8f\left(2x+3\right)=8x^3+36x^2+54x+27-3\left(4x^2+12x+9\right)-25\left(2x+3\right)+115=\left(2x+3\right)^3-3\left(2x+3\right)^2-25\left(2x+3\right)+115\)
\(\Rightarrow f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\)
ĐẾn đây ai làm tiếp hộ vs
Ta có: \(8.f\left(2x+3\right)=8x^3+24x^2-32x+40\)
\(=\left(2x+3\right)^3-3\left(2x+3\right)-25\left(2x+3\right)+115\)
Đặt \(2x+3=X\)ta có: \(8f\left(X\right)=X^3-3X-25X+115\)
Vậy công thức của hàm f(x ) là: \(f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\).
Ta có:
\(-f\left(\sqrt[3]{2013}\right)=-\frac{\left(\sqrt[3]{2013}\right)^3-3.\left(\sqrt[3]{2013}\right)^2-25\sqrt[3]{2013}+115}{8}\).
Các bạn làm tiếp và kiểm tra lại phần tính toán giúp mình nhé !
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0