Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
c. Giao điểm thứ hai của đồ thị có hoành độ bằng -3 và tung độ bằng 9. Ta có : B(-3 ; 9).
b: Tọa độ M là:
x=0 và y=1-3/2*0=1
Vì (d) đi qua M(0;1) và N(2;3) nên ta có hệ:
0a+b=1 và 2a+b=3
=>b=1; a=1
(đơn vị đo trên các trục tọa độ là xentimet)
Lời giải:
a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.
b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).
c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.
a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)
Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)
b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:
\(x=2x+2\)
\(\Leftrightarrow\) \(x-2x=2\)
\(\Leftrightarrow\) \(-x=2\)
\(\Leftrightarrow\) \(x=-2\)
Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)
Vậy tọa độ điểm A \(\left(-2;-2\right)\)
c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)
\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)
Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x
\(\Rightarrow\) Tọa độ điểm C (2;2)
\(S_{ABC}=S_{ADO}+S_{BCOD}\)
a) Do (P) đi qua A nên: 2=a.22 <=> a=1/2 =>(P): y=1/2.x2
b) Phương trình hoành độ giao điểm của 2 đths là:
1/2.x2=2x+1
<=> 1/2.x2-2x-1=0
<=>\(\orbr{\begin{cases}x1=2-\sqrt{6}\Rightarrow y1=5-2\sqrt{6}\\x2=2+\sqrt{6}\Rightarrow y2=5+2\sqrt{6}\end{cases}}\)
Câu A)
Vì ( P ) đi qua điểm A ( 2;2 ) <=>\(2^2a=2\)<=> \(a=2\cdot4\)<=>\(a=8\)
Vậy \(a=8\)thì ( P ) đi qua điểm A.
Câu B) Thay \(a=8\)vào ( p )
Lập phương trình hoành độ giao điểm ( P ) và ( d)\(:\)\(8x^2=2x+1\)<=> \(8x^2-2x=1\)<=> \(x\left(x-2\right)=1\)
<=>\(\hept{\begin{cases}x=1\\x-2=1\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\x=3\end{cases}}\)(Nhận)
Với \(x=1\)thì \(y=2\cdot1+1=3\)
\(x=3\)thì \(y=2\cdot3+1=7\)
Vậy ( P ) và ( d ) giao nhau tại 2 điểm:(1 ;3) và ( 3 ;7 )
Đúng nha bạn @$$$$@