K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: loading...

b: Phương trình hoành độ giao điểm là:

\(2x+6=-\dfrac{1}{2}x+3\)

=>\(\dfrac{5}{2}x=-3\)

=>\(x=-3:\dfrac{5}{2}=-\dfrac{6}{5}\)=-1,2

Thay x=-1,2 vào y=2x+6, ta được:

\(y=2\cdot\left(-1,2\right)+6=3,6\)

vậy: C(-1,2;3,6)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\)

vậy: A(-3;0); B(6;0); C(-1,2;3,6)

\(AB=\sqrt{\left(6+3\right)^2+\left(0-0\right)^2}=9\)

\(AC=\sqrt{\left(-1,2+3\right)^2+\left(3,6-0\right)^2}=\dfrac{9\sqrt{5}}{5}\)

\(BC=\sqrt{\left(-1,2-6\right)^2+\left(3,6-0\right)^2}=\dfrac{18\sqrt{5}}{5}\)

Vì \(AC^2+BC^2=AB^2\)

nên ΔABC vuông tại C

=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\dfrac{9}{\sqrt{5}}\cdot\dfrac{18}{\sqrt{5}}=\dfrac{81}{5}\)

d: (d2): y=-1/2x+3

=>\(-\dfrac{1}{2}x-y+3=0\)

\(d\left(M;\left(d2\right)\right)=\dfrac{\left|0\cdot\left(-\dfrac{1}{2}\right)+\left(-3\right)\cdot\left(-1\right)+3\right|}{\sqrt{\left(-\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=6:\dfrac{\sqrt{5}}{2}=\dfrac{12}{\sqrt{5}}\)

a: 

loading...

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)

Tọa độ C là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Tọa độ M là:

\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-3\\y=2x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3:\dfrac{5}{2}=-3\cdot\dfrac{2}{5}=-\dfrac{6}{5}\\y=2\cdot\dfrac{-6}{5}+4=\dfrac{-12}{5}+4=\dfrac{8}{5}\end{matrix}\right.\)

A(-2;0); C(2;0); M(-1,2;1,6)

\(AC=\sqrt{\left(2+2\right)^2+\left(0-0\right)^2}=\sqrt{4^2}=4\)

\(AM=\sqrt{\left(-1,2+2\right)^2+\left(1,6-0\right)^2}=\dfrac{4\sqrt{5}}{5}\)

\(CM=\sqrt{\left(-1,2-2\right)^2+1,6^2}=\dfrac{8\sqrt{5}}{5}\)

Vì \(MA^2+MC^2=AC^2\)

nên ΔMAC vuông tại M

c: Vì ΔMAC vuông tại M

nên \(S_{MAC}=\dfrac{1}{2}\cdot MA\cdot MC=\dfrac{1}{2}\cdot\dfrac{4\sqrt{5}}{5}\cdot\dfrac{8\sqrt{5}}{5}=\dfrac{2\cdot8}{5}=\dfrac{16}{5}\)

 

21 tháng 11 2018

@Akai Haruma

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)

=>\(m+1=-\dfrac{1}{2}\)

=>\(m=-\dfrac{3}{2}\)

b: Thay x=2 vào y=x+3, ta được:

\(y=2+3=5\)

Thay x=2 và y=5 vào (d), ta được:

\(2\left(m+1\right)-5=5\)

=>2(m+1)=10

=>m+1=5

=>m=5-1=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)

=>A(0;-5)

\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)

Tọa độ B là:

\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)

=>\(B\left(\dfrac{5}{m+1};0\right)\)

\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)

Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)

Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)

=>\(2\left|m+1\right|=5\)

=>|m+1|=5/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)

 

8 tháng 7 2018

giúc mk với 

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

12 tháng 9 2023

- Vẽ đồ thị hàm số \(y = x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} =  - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

- Vẽ đồ thị hàm số \(y =  - x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y =  - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).

Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).

Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).

Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).

17 tháng 12 2017

mặt phẳng tọa độ Oxy, đồ thị hàm số y = 3/2x - 2 (1) và y = -1/2x + 2 (2). Gọi M là giao điểm của 2 hai đồ thị trên, tìm tọa độ của M
phương trình hoành độ giao điểmM là
3/2x-2=-1/2x+2=>x=2
Tung độ giao điểm M là
y=-1/2.2+2=1
=>M(2;1)
tìm m để đt (d) y= (m-1)x+1 đồng quy với 2 đths (1) và (2)
đt (d) y= (m-1)x+1 đồng quy với 2 đths (1) và (2)
=>đt (d) y= (m-1)x+1 đi qua điểm M(2;1)
=>1=(m-1)2+1=>m=1

17 tháng 12 2017

sai ròi chắc lun

11 tháng 10 2021

b: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+2\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{4}\cdot4^2=4\\y=\dfrac{1}{4}\cdot\left(-2\right)^2=1\end{matrix}\right.\)