\(y=2x^2-3x+2\) và hàm số \(y=x^2-5x+m\). Tìm m để...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 1 2019

Phương trình hoành độ giao điểm:

\(2x^2-3x+2=x^2-5x+m\)

\(\Leftrightarrow x^2+2x+2-m=0\) (1)

Để hai đồ thị cắt nhau tại 2 điểm phân biệt \(\Rightarrow\left(1\right)\) có 2 nghiệm phân biệt

\(\Rightarrow\Delta'=1-\left(2-m\right)=m-1>0\Rightarrow m>1\)

Gọi M là trung điểm AB với hoành độ A, B là nghiệm của (1)

\(\Rightarrow x_M=\dfrac{x_A+x_B}{2}=-1\)

\(\Rightarrow\) quỹ tích M là phần phía trên điểm có tọa độ \(\left(-1;7\right)\) của đường thẳng \(x=-1\)

7 tháng 12 2016

Toán lớp 9.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

2 tháng 4 2017

a) Điểm A(x0;y0) thuộc đồ thị (G) của hàm số y = f(x) có tập xác định D khi và chỉ khi:

Tập xác định của hàm số y = 3x2 – 2x + 1 là D = R.

Ta có : -1 ∈ R, f(- 1) = 3(- 1)2 – 2(- 1) + 1 = 6

Vậy điểm M(- 1;6) thuộc đồ thị hàm số đã cho.

b) Ta có: 1 ∈ R, f(1) = 3 (1)2 – 2(1) + 1 = 2 ≠ 1.

Vậy N(1;1) không thuộc đồ thị đã cho.

c) P(0;1) thuộc đồ thị đã cho.

27 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+2mx-3m=-2x+3\)

\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)

Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+5m+4>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)

Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)

\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)

\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)

\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)

\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)

\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)

\(\Leftrightarrow m^2+5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)

27 tháng 12 2020

Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và 

(P) : x2 + 2mx - 3m = 0

x2 + 2mx - 3m = -2x + 3 

⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)

Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0 

⇔ (m+1)2 + 3(m+1) > 0

⇔ (m+1)(m+4) > 0

⇔ m ∈ R \ (-4 ; -1) (!)

Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)

Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\) 

Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn

y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)

Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)

AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)

⇒ (xA - xB)2 + (yA - yB)2 = 80

⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80

Sau đó bạn thay m vào rồi biến đổi, kết quả ta được

(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )

Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là 

M = {0 ; -5}