Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét \(x_1,x_2\in\mathbb{R}\), giả sử \(x_1< x_2\). Ta có:
\(f(x_1)-f(x_2)=(2m^2-2m+7)x_1+3m^2-m-1-[(2m^2-4m+7)x_2+3m^2-m-1]\)
\(\Leftrightarrow f(x_1)-f(x_2)=(2m^2-2m+7)(x_1-x_2)\)
Ta thấy \(2m^2-2m+7=m^2+(m-1)^2+6\geq 6>0\) với mọi \(m\in\mathbb{R}\), mà \(x_1< x_2\)
Do đó, \((2m^2-2m+7)(x_1-x_2)< 0\Leftrightarrow f(x_1)< f(x_2)\)
Như vậy, với \(x_1< x_2\Rightarrow f(x_1) < f(x_2)\), do đó hàm số đồng biến trên R
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
Để y đồng biến trên R thì
\(2m^2-4m+7>0\)
<=> \(2\left(m^2-2m+1\right)+5>0\)
<=> \(2\left(m-1\right)^2+5>0\)( Phương trình có ngiệm với mọi m)
Vậy hàm số luôn đồng biến trên R
Ta có:
1m2 - 4m + 7 = 2(m2 - 2m + 1) + 4
= 2(m - 1)2 + 4 > 0 với mọi m
Vậy y luôn đồng biến trên R với m