Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A
Hàm số xác định và liên tục trên [0;3]
Ta có y' = 0 ⇔
Khi đó y(0) = 2, y(2) = 6, y(3) = 2
Vậy M = 6; m = 2 => M + m = 8
Chọn B.
Tập xác định: D = ℝ
y = x 3 + 3 m x 2 - 2 x + 1
Hàm số có điểm cực đại tại x = -1 => y'(1) = 0
Với => Hàm số đạt cực đại tại x = -1.
Chọn: C
Tọa độ hai điểm cực trị: A 0 ; 3 m 3 , B 2 m ; - m 3
Ta có: y = y ' . 1 3 x - m 3 - 2 m x + 3 m 3
⇒ Phương trình đường thẳng đi qua hai điểm cực trị là:
⇒ d O ; A B = 3 m 3 4 m 4 + 1
Diện tích tam giác OAB là;
Tổng hai giá trị của m là: -2 + 2 = 0
\(TXĐ:D=R\)
\(y=x^{3}-3mx^{2}-9m^{2}x\)
\(y'=3x^{2}-6mx-9m^{2}=0\)
\(\Leftrightarrow\)\(y'=3(x+m)(x-3m)=0\)
\(\left[\begin{array}{} x=-m\\ x=3m \end{array} \right.\)
\(y'<0\) \(\forall\)\(x\) \(\in\)\((0,1)\).Ta xét các trường hợp
\(TH1:-m\)\(\le\)\(0\)\(<1\)\(\le\)\(3m\)
\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)
\(TH2:3m\)\(\le\)\(0\)<\(1\)\(\le\)\(-m\)
\(\Leftrightarrow\)\(m\)\(\le\)\(-1\)
Vậy \(m\)\(\ge\)\(\dfrac{1}{3}\) hoặc \(m\)\(\le\)\(-1\)
\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)
Chọn B
y ' = 3 x 2 - 6 m x + m 2 - 1 ; y ' ' = 6 x - 6 m
Hàm số đạt cực đại tại x = 2 khi
Ta có
Đề đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó tọa độ hai điểm cực trị là A( 0 ; 4m2- 2) và B( 2m; 4m2- 4m3-2).
Do I( 1; 0) là trung điểm của AB nên
Chọn C.
Đề là \(y=-x^3-3mx^2+6\) hay \(y=x^3-3mx^2+6\) nhỉ?