Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6 <=>-m-2-m+6=3 <=>-2m=-1 <=>m=1/2.
\(\frac{y-y_1}{y_2-y_1}=\frac{ax+b-ax_1-b}{ax_2+b-ax_1-b}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)
xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé
\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)
\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)
\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)
Ta có : a - b + c = 1 + 6 - 7 = 0
vậy pt có nghiệm x = -1 ; x = 7
a) vì A(-1; 3) thuộc (d) nên:
3 = 2.(-1) - a + 1
<=> 3 = -2 - a + 1
<=> a = 4
b) Lập phương trình hoành độ giao điểm:
\(2x-a+1=\frac{1}{2}x^2\)
\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)
ta có: \(y_1=\frac{1}{2}x_1^2\)
\(y_2=\frac{1}{2}x_2^2\)
\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)
\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)
\(\Leftrightarrow10a-a^2+87=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)
Gọi ptđt (d) có dạng: y= kx+b
Vì M(1;12)\(\in\) (d)
Thay xM= 1; yM= 12 vào (d)
\(k+b=12\Rightarrow b=12-k\)
Xét PTHĐGĐ của (d) và (P)
\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)
\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)
Có \(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)
Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK
chắc 2 bạn là một: https://olm.vn/thanhvien/perfectonedirection
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
a.
pthdgd
x^2-mx-2=0
∆=m^2+2>o moi m
c/a=-2<0
=>x1<0<x2 moi m => dpcm
Bài này giải như số ý, kết luận khác chút.
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=\left(k-1\right)x+4\)
\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)
( a = 1; b = - (k-1); c = -4 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)
\(=\left(k-1\right)^2+16>0\forall k\)
Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)
Ta có: \(y_1+y_2=y_1y_2\)
\(\Leftrightarrow S=P\)
\(\Leftrightarrow k-1=-4\)
\(\Leftrightarrow k=-3\left(TMĐK\right)\)
Vậy: k = -3 là giá trị cần tìm