K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

Chọn C

Xét hàm số f(x) =  x 3 - 3 x + m .

Để GTNN của hàm số  y =  x 3 - 3 x + m 2  trên đoạn [-1;1]  bằng 1 thì   hoặc 

Ta có 

=> f(x) nghịch biến trên [-1;1]

Suy ra  và 

Trường hợp 1: 

Trường hợp 2: 

Vậy tổng các giá trị của tham số m là 0.

22 tháng 2 2017

Chọn C

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

28 tháng 5 2018

Chọn D

y = f(x) - x 3 - 3 x 2   +   m

Ta có: 

f(-1) = m - 2; f(0) = m; f(1) = m - 4;

Ta thấy  Suy ra yêu cầu bài toán 

22 tháng 3 2017

Chọn D

Xét hàm số y =  x 2 - m x + 2 m x - 2  trên [-1;1] có: 

Bảng biến thiên

Trường hợp 1.  Khi đó

Trường hợp 2. 

Khả năng 1. 

Khi đó 

Khả năng 2  Khi đó 

 Trường hợp này vô nghiệm.

Khả năng 3.  Khi đó  Vô nghiệm.

Vậy có hai giá trị thỏa mãn là  Do đó tổng tất cả các phần tử của S là -1.

20 tháng 4 2017

+ Xét hàm số f(x) =x2- 2x  trên đoạn [ -1; 2],

+  ta có đạo hàm f’(x) = 2( x-1)  và f’( x) =0 khi x= 1  

Vậy: 

TH1: Với  m a x [ - 1 , 2 ]   =   | m - 1 | ,

ta có  m - 1   ≥ m + 3 | m - 1 |   ≥ | m | | m - 1 |   =   5  

↔ | m - 1 | ≥ m + 3 | m - 1 |   ≥ | m | m   =   - 4   ∨   m   =   6 ↔ m   =   - 4

TH2: Với

  m a x [ - 1 , 2 ]   y   =   | m + 3 |   ↔ | m + 3 |   ≥ | m - 1 | | m + 3 |   ≥ | m | | m + 3 |   ≥ 5

  ↔ | m + 3 |     ≥ |   | m - 1 | | m + 3 |   ≥ | m | m   =   2   ∨   m   =   - 8   ↔   m   =   2

TH3: Với

  m a x     [ - 1 , 2 ]       y   =   | m |   ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m |   =   5 ↔   | m |   ≥ | m - 1 | | m | ≥ | m + 3 | m   =   5   ∨   m   =   - 5

( vô nghiệm)

Chọn D.

15 tháng 12 2019

+ Xét hàm số  f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .

Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận )  hoặc x= -1( loại)

+ Suy ra GTLN và GTNN của  f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.

+ Xét hàm số y = x 3 - 3 x + m   trên đoạn [0; 2 ] ta được giá trị lớn nhất của y  là

m a x m ; m - 2 ; m + 1 = 3 .

TH1: m= 3 thì max {1;3;5}= 5 ( loại )

TH2: 

+ Với m= -1. Ta có max {1; 3}= 3 (nhận).

+Với m= 5. Ta có max { 3;5;7}= 7 (loại).

TH3: 

+ Với m= 1. Ta có max {1; 3}= 3 (nhận).

+ Với m= -5. Ta có max {3;5;7}= 7 (loại).

Do đó m= -1 hoặc m= 1

Vậy tập hợp S  phần tử.

Chọn B.

13 tháng 11 2019