Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đạo hàm f'(x) = 2 - m x 2 ( x + 1 ) x ( x + 1 )
f'(x) = 0 ⇒ x = 2 m ↔ x = m 2 4 ∈ [ 0 ; 4 ] , ∀ m > 1
+ Lập bảng biến thiên, ta kết luận được
m a x [ 0 ; 4 ] f ( x ) = f ( 4 m 2 ) = m 2 + 4
+ Vậy ta cần có m 2 + 4 < 3
↔ m < 5 → m > 1 m ∈ ( 1 ; 5 )
Chọn C.
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Chọn D
y = f(x) = - x 3 - 3 x 2 + m
Ta có:
f(-1) = m - 2; f(0) = m; f(1) = m - 4;
Ta thấy Suy ra yêu cầu bài toán
Chọn D
Xét hàm số y = x 2 - m x + 2 m x - 2 trên [-1;1] có:
Bảng biến thiên
Trường hợp 1. Khi đó
Trường hợp 2.
Khả năng 1.
Khi đó
Khả năng 2 Khi đó
Trường hợp này vô nghiệm.
Khả năng 3. Khi đó Vô nghiệm.
Vậy có hai giá trị thỏa mãn là Do đó tổng tất cả các phần tử của S là -1.
+ Xét hàm số f(x) =x2- 2x trên đoạn [ -1; 2],
+ ta có đạo hàm f’(x) = 2( x-1) và f’( x) =0 khi x= 1
Vậy:
TH1: Với m a x [ - 1 , 2 ] = | m - 1 | ,
ta có m - 1 ≥ m + 3 | m - 1 | ≥ | m | | m - 1 | = 5
↔ | m - 1 | ≥ m + 3 | m - 1 | ≥ | m | m = - 4 ∨ m = 6 ↔ m = - 4
TH2: Với
m a x [ - 1 , 2 ] y = | m + 3 | ↔ | m + 3 | ≥ | m - 1 | | m + 3 | ≥ | m | | m + 3 | ≥ 5
↔ | m + 3 | ≥ | | m - 1 | | m + 3 | ≥ | m | m = 2 ∨ m = - 8 ↔ m = 2
TH3: Với
m a x [ - 1 , 2 ] y = | m | ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m | = 5 ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | m = 5 ∨ m = - 5
( vô nghiệm)
Chọn D.
+ Xét hàm số f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .
Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận ) hoặc x= -1( loại)
+ Suy ra GTLN và GTNN của f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.
+ Xét hàm số y = x 3 - 3 x + m trên đoạn [0; 2 ] ta được giá trị lớn nhất của y là
m a x m ; m - 2 ; m + 1 = 3 .
TH1: m= 3 thì max {1;3;5}= 5 ( loại )
TH2:
+ Với m= -1. Ta có max {1; 3}= 3 (nhận).
+Với m= 5. Ta có max { 3;5;7}= 7 (loại).
TH3:
+ Với m= 1. Ta có max {1; 3}= 3 (nhận).
+ Với m= -5. Ta có max {3;5;7}= 7 (loại).
Do đó m= -1 hoặc m= 1
Vậy tập hợp S có phần tử.
Chọn B.
Chọn C
Xét hàm số f(x) = x 3 - 3 x + m .
Để GTNN của hàm số y = x 3 - 3 x + m 2 trên đoạn [-1;1] bằng 1 thì hoặc
Ta có
=> f(x) nghịch biến trên [-1;1]
Suy ra và
Trường hợp 1:
Trường hợp 2:
Vậy tổng các giá trị của tham số m là 0.