Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt ⇔ 1 < m < 2.
Đáp án D
Đồ thị hàm số y = f x đối xứng với đồ thị hình vẽ qua trục hoành
Phương trình f x = m có 6 nghiệm thực phân biệt khi 3 < m < 4
Có
Phương trình này có hai nghiệm
• Với ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc
Với t = -1 phương trình (1) cho đúng một nghiệm x = π ; với t = 0 phương trình cho hai nghiệm
Với mỗi phương trình cho hai nghiệm thuộc
Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt
Chọn B.
Đáp án C
Phương pháp:
- Vẽ đồ thị hàm số y = f x từ đồ thị hàm số y = f x : giữ nguyên phần đồ thị phía trên trục hoành và lấy đối xứng phần đồ thị phía dưới qua trục hoành.
- Điều kiện để phương trình f x = 2 m 2 − m + 3 có 6 nghiệm phân biệt là đường thẳng y = 2 m 2 − m + 3 cắt đồ thị hàm số y = f x tại 6 điểm phân biệt.
Cách giải:
Ta có đồ thị hàm số y = f x .
Lúc này, để phương trình f x = 2 m 2 − m + 3 có 6 nghiệm phân biệt thì đường thẳng y = 2 m 2 − m + 3 cắt đồ thị hàm số y = f x tại 6 điểm phân biệt.
Chú ý khi giải:
HS thường nhầm lẫn cách vẽ các đồ thị hàm số y = f x và y = f x , hoặc ở bước giải bất phương trình kết hợp nghiệm sai dẫn đến chọn sai đáp án.