K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

19 tháng 1 2016

Khi m = 2 : y = x + 5

TXĐ : D = R.

Tính biến thiên :

  • a = 1 > 0 hàm số đồng biến trên R.

bảng biến thiên :

x

-∞

 

+∞

y

-∞

\nearrow

+∞

Bảng giá trị :

x

0

-5

y

5

0

Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).

b/(dm) đi qua điểm A(4, -1) :

4 = (m -1)(-1) +2m +1

<=> m = 2

3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1

4.(dm) đi qua điểm  cố định M(x0, y0) :

Ta được  : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.

<=> (x0 + 2) m = y0 – 1 + x0(*)

(*) luôn đúng mọi m khi :

x0 + 2= 0 và  y0 – 1  + x0 = 0

<=> x0 =- 2  và  y0 = 3

Vậy : điểm  cố định M(-2, 3)

 

\(y=mx^2-2mx-m^2-1\)

\(=m\left(x^2-2x\right)-m^2-1\)

Điểm cố định của (d) có tọa độ là:

\(\left\{{}\begin{matrix}x^2-2x=0\\y=-m^2-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=-m^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;2\right\}\\y=-m^2-1\end{matrix}\right.\)

TH1: x=0

Thay x=0 và \(y=-m^2-1\) vào y=x-2, ta được:

\(-m^2-1=0-2=-2\)

=>\(m^2+1=2\)

=>\(m^2=1\)

=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

TH2: x=2

Thay x=2 và \(y=-m^2-1\) vào y=x-2, ta được:

\(-m^2-1=2-2=0\)

=>\(m^2+1=0\)

=>\(m^2=-1\)(vô lý)

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-1}{2}\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{1^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{1+8}{4}=-\dfrac{9}{4}\end{matrix}\right.\)

Vì (P): \(y=x^2+x-2\) có a=1>0

nên (P) đồng biến khi x>-1/2 và nghịch biến khi x<-1/2

Vẽ (P): loading...

b: Phương trình hoành độ giao điểm là:

\(x^2+x-2=-\left(m+1\right)x+m+2\)

=>\(x^2+x-2+\left(m+1\right)x-m-2=0\)

=>\(x^2+\left(m+2\right)x-m-4=0\)(1)

Để (P) cắt (d) tại hai điểm phân biệt A,B nằm về hai phía so với trục Oy thì phương trình (1) có hai nghiệm phân biệt trái dấu

=>-m-4<0

=>-m<4

=>m>-4

mà \(m\in Z;m\in\left[-10;4\right]\)

nên \(m\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)

=>Có 8 số thỏa mãn