Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{12x-2}{4x+1}=\frac{12x+3-5}{4x+1}=3-\frac{5}{4x+1}\)
Để f(x) là số nguyên thì 5 chia hết cho (4x+1)
----------lập bảng-------
suy ra x = { 0;1}
b, *f(x)> 0
=> \(\hept{\begin{cases}12x-2>0\\4x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x>-\frac{1}{4}\end{cases}}\Rightarrow x>\frac{1}{6}\)hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1< 0\end{cases}\Rightarrow x< -\frac{1}{4}}\)
Suy ra f(x)>0 khi \(\orbr{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}\)
*f(x)<0
=> \(\hept{\begin{cases}12x-2>0\\4x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}}\)(loại)
hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1>0\end{cases}\Rightarrow-\frac{1}{4}< x< \frac{1}{6}}\)
Vậy f(x) < 0 khi -1/4 <x<1/6
bài 1:
a) y=f(0)=|1-0|+2=3
y=f(1)=|1-(-1)|+2=4
y=f(-1/2)=|1-(-1/2)|+2=7/2
b) f(x)=3 <=> |1-x|+2=3
|1-x|=3-2
|1-x|=1
=> \(\orbr{\begin{cases}1-x=1\\1-x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
f(x)=3-x <=> |1-x|+2=3-x
|1-x|=3-x-2
|1-x|=1-x
=> (1-x)-(1-x)=0
2.(1-x)=0
=> 1-x=0
=> x=1
y = f(x) = -4x + 1
a) y = f(-1) = -4.(-1) + 1 = 5
y = f(1/2) = -4.1/2 + 1 = -1
b) Để y = 0 <=> -4x + 1 = 0 <=> x = 1/4
Để y = -3 <=> -4x + 1 = -3 <=> x = 1
bài này chữa r mà