Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x1 < x2 và 3 > 0
suy ra : 3x1< 3x2 hay f(x1) < f(x2 ).
Vậy hàm số đã cho đồng biến trên R.
a: f(1)=-1,5
f(2)=-6
f(3)=-13,5
=>f(1)>f(2)>f(3)
b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)
f(-2)=-1,5x4=-6
f(-1)=-1,5x1=-1,5
=>f(-3)<f(-2)<f(-1)
c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0
Cho hàm số: y = f(x) = 3x. Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2. Chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đã cho đồng biến trên
------------
thay x1 vào f(x) ta được f(x1)=3x1
thay x2 và f(x) ta được f(x2)=3x2
lấy f(x1)-f(x2)=3x1-3x2=3(x1-x2)(1)
ta có x1<x2=>x1-x2<0
=> (1) <0
<=>f(x1)-f(x2)<0
<=>f(x1)<f(x2)
=> hàm số đã cho đồng biến
bài làm của Nguyễn Thị Thu Trang
Từ x1 < x2 và 3 > 0 suy ra 3x1< 3x2 hay f(x1) < f(x2 ).
Vậy hàm số đã cho đồng biến trên R.
P/s: Làm theo cách ngắn gọn nhé Songoku Sky Fc11.
Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)
Giả sử : \(x_1< x_2\)
\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)
\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)
Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)
\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vậy hàm số đồng biến trên \(R\)
ta có : x1<x2 suy ra 3x1<3x2 suy ra f(x1)<f(x2)
Suy ra y=f(x)=3x đồng biến trên R
Cho x các giá trị bất kì x1, x2 sao cho x1 < x2
=> x1 - x2 < 0
Ta có: f(x1) = 3x1 ; f( x2) = 3x2
=> f(x1) - f(x2) = 3x1 - 3x2 = 3(x1 - x2) < 0
=> f(x1) < f(x2)
Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.