K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Hàm số y = ax + b ( a ≠ 0 )  đồng biến trên R khi a> 0.

Do đó, để hàm số đã cho đồng biến trên R thì  m 2 - 1 > 0 ⇔ [ m > 1 m < - 1

Chọn C.

29 tháng 1 2017

Ta có  f x ≥ 0 ⇔ x + 3 m ≥ 2 ⇔ x ≥ 2 - 3 m

f x ≥ 0  với mọi x ∈ [ 1 ; + ∞ ) ⇔ [ 1 ; + ∞ ) ⊂ [ 2 - 3 m ; + ∞ ) ⇔ 2 - 3 m ≤ 1 ⇔ m ≥ 1 3 .

Chọn C.

23 tháng 3 2018

x - y = m                           ( 1 ) x 2 - x y - m - 2 = 0   ( 2 )

Từ (1), ta có y = x - m , thế vào (2) ta được phương trình:

 x2 – x (x- m) – m - 2= 0 ⇔ x2 – x2 + mx –m –2 = 0

hay mx –m -2 = 0 (*) .

Hệ phương trình đã cho có nghiệm khi phương trình (*) có nghiệm ⇔ m ≠ 0 .

Chọn B.

23 tháng 2 2019

Ta có  2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2

6 tháng 9 2017

Hàm số  y = m - 2 x - x + 1  xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .

Do đó tập xác định của hàm số y = m - 2 x - x + 1  là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2

5 tháng 5 2017

Chọn D

22 tháng 5 2018

* Nếu m= 0 thì bất phương trình đã cho trở  thành: 

0x < 0(  luôn đúng với mọi x).

* Nếu  m= 1 thì bất phương trình đã cho  trở thành:

0x < 1 ( luôn đúng với mọi x)

Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}

1 tháng 8 2018

Để xét bất phương trình bậc nhất vô nghiệm hay luôn đúng với mọi x ta chỉ cần xét hệ số a= 0.

* Với m = 0 thì bất phương  trình đã cho trở thành:

        0 x ≤ 0 ( luôn đúng với mọi  x)   ( loại)

* Với m = -3 thì bất phương trình đã cho trở thành:

        0 x ≤ 9   (luôn đúng với mọi  x)   ( loại)

Vậy không có giá trị nào của m để bất phương trình đã cho vô nghiệm