\(y=-6x\). Tìm các giá trị của \(x\) sao cho :

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

-Nếu y>0

=>-6.x>0

=>x<0

-Nếu y<0

=>-6.x<0

=>x>0

17 tháng 12 2017

a) y = – 6x

y > 0 ⇒⇒ – 6x > 0 ⇒⇒ x < 0

Vậy mọi x ∈ R và x < 0 thì y = – 6x > 0.

b) y = – 6x

y < 0 ⇒⇒ -6x < 0 ⇒⇒ x > 0

Vậy x > 0 thì y = – 6x < 0.(x ∈ R)

a: Để y>0 thì x-7<0

hay x<7

b: Để y<0 thì x-7>0

hay x>7

28 tháng 8 2017

Đồ thị hàm số đi qua O (0; 0)

Cho x = 2 y = 1,5. 2 = 3

Ta có: A(2; 3)

Vẽ đường thẳng OA ta có đồ thị hàm số.

a) f(1) = 1,5. 1 = 1,5

f(-1) = 1,5. (-1) = -1,5

f(-2) = 1,5. (-2) = -3

f(2) = 1,5. 2 = 3

f(0) =0

b)\(y=-1\Rightarrow x=\dfrac{-1}{1,5}=-\dfrac{2}{3}\)

\(y=0\Rightarrow x=\dfrac{0}{1,5}=0\)

\(y=4,5\Rightarrow x=\dfrac{4,5}{1,5}=3\)

c) y > 0 1,5x > 0 x > 0

y < 0 1,5x < 0 x < 0

28 tháng 8 2017

Đồ thị hàm số đi qua O (0; 0)

Cho x = 2 ⇒⇒ y = 1,5. 2 = 3

Ta có: A(2; 3)

Vẽ đường thẳng OA ta có đồ thị hàm số.

a) f(1) = 1,5. 1 = 1,5

f(-1) = 1,5. (-1) = -1,5

f(-2) = 1,5. (-2) = -3

f(2) = 1,5. 2 = 3

f(0) = 0

b)y=−1⇒x=\(\dfrac{-1}{1,5}=-\dfrac{2}{3}\)

b)y=0⇒x==\(\dfrac{0}{1,5}=0\)

y=4,5⇒x=\(\dfrac{4,5}{1,5}=3\)

c) y > 0 1,5x > 0 x > 0

y < 0 1,5x < 0 x < 0


18 tháng 4 2017

Giải bài 44 trang 73 Toán 7 Tập 1 | Giải bài tập Toán 7

Cho x =2 được y =-2 =>A(2 ;-1) thuộc đồ thị. Vẽ đồ thị

a) Trên đồ thị ta thấy

f(2)=-1

f(-2) =1

f(4)=-2

f(0)=0;

b) Trên đồ thị ta thấy

y=-1 => x=2

y=0 => x=0

y=2,5 => x=-5

c) Khi y dương y > 0 ứng với phần đồ thị nằm trên trục hoành và bên trái trục tung nên x < 0.

Khi y âm : y < 0 ứng với phần đồ thị nằm trên trục hoành và bên phải trục tung nên x > 0

12 tháng 12 2017

Giải bài 44 trang 73 Toán 7 Tập 1 | Giải bài tập Toán 7

28 tháng 8 2017

a) 2x + y – 1 = 0 => 2x + y = 1 có vô số giá trị

Các cặp giá trị có dạng (x∈ R; y = 1 – 2x)

Ví dụ: (x = 0; y =1); (x = 1; y = -1); ….

b) x – y – 3 => x – y = 3 có vô só giá trị

Các cặp giá trị có dạng (x∈ R; y = x – 3)

Ví dụ: (x = 0; y = -3); (x = 1; y = -2); ….

11 tháng 1 2018

a) 2x + y - 1 = 0

giả sử nếu x = 3 thì ta có

2*3 + y - 1 =0

6-y+1=0

7-y=0

y=7

Vậy x=3 thì y = 7

b) x - y -3 = 0

Gỉa sử x = 4 thì ta có

4 - y - 3 = 0

1 - y = 0

y = 1

Vậy nếu x = 4 thì y = 1

25 tháng 7 2016

\(1.\frac{x-7}{2}< 0\)

\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)

\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)

\(S=\left\{xlx< 7\right\}\)

2)\(\)Đề biểu thức sau nhân giá trị âm thì :

\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)

\(S=\left\{xlx< 3\right\}\)

3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:

\(x^2+x\ge0\)

\(\Leftrightarrow x\left(x+1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)

\(S=\left\{xlx\ge-1\right\}\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

23 tháng 4 2021

fdfdfdfry5tytgrgtrtrtr

28 tháng 4 2021

Chưa ai giải được bài này sao?