Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : y = -2x+k(x+1) = x(k-2) + k
a) Đths đi qua gốc tọa độ thì có dạng y = ax (a khác 0) , do đó để y = x(k-2)+k đi qua gốc tọa độ thì k-2 = 0 => k = 2
b) đths đi qua điểm M(-2;3) nên \(3=-2.\left(-2\right)+k\left(-2+1\right)\Leftrightarrow k=1\)
c) để đths y = x(k-2)+k song song với đường thằng y = \(\sqrt{2}\)x thì a = a' , b khác b', tức là
\(\begin{cases}k-2=\sqrt{2}\\k\ne0\end{cases}\) \(\Rightarrow\begin{cases}k=2+\sqrt{2}\\k\ne0\end{cases}\)
cho mình hỏi tại sao từ y = -2x+k(x+1) lại = x(k-2) +k vậy ạ?
0
Đồ thị hàm số song song với đường thẳng y = 2x + 1 nên a = 2.
Đồ thị hàm số đi qua điểm M(1; 4) nên 4 = a.1 + b suy ra b = 2
Hay S = a + b = 4
Chọn A.
a/ Thay vào : 2,5 = a.1+3 => a = ...
b/ Đths song song với đường thẳng y = -2x tức là hệ số góc bằng nhau
=> a = -2
a) phương trình tổng quát của đường thẳng đi qua \(M\left(1;-2\right)\) có VTPT\(\left(2;3\right)\) là \(2\left(x-1\right)+3\left(y+2\right)=0\) \(\Leftrightarrow2x+3y+4=0\)
vì đường thẳng này nhận \(\overrightarrow{u}\left(2;3\right)\) làm VTPT \(\Rightarrow\) nó nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là \(\left\{{}\begin{matrix}x=1+3t\\y=-2-2t\end{matrix}\right.\)
b) ta có đường thẳng d nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT
phương trình tổng quát của đường thẳng đi qua \(N\left(0;-1\right)\) và nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT là \(1\left(x-0\right)+2\left(y+1\right)=0\Leftrightarrow x+2y+2=0\)
vì nó nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là : \(\left\{{}\begin{matrix}x=-2t\\y=-1+t\end{matrix}\right.\)
c) ta có d đi qua điểm M và N \(\Rightarrow\) nó nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP
\(\Rightarrow\) phương trình tham số của đường thẳng đi qua \(M\left(1;-1\right)\) và nhận \(\overrightarrow{MN}\) làm VTCP là : \(\left\{{}\begin{matrix}x=1+2t\\y=-1+3t\end{matrix}\right.\)
ta có d nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP \(\Rightarrow\) d nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTPT
\(\Rightarrow\) phương trình tổng quát của d là : \(3\left(x-2\right)-2\left(y-3\right)=0\Leftrightarrow3x-2y=0\)
câu d và câu e ) bn chỉ cần tìm VTPT của 2 đường thẳng đó và \(\Rightarrow\) VTCP là ra hết thôi .
gợi ý : đường thẳng \(2x-3y-3=0\) có \(\overrightarrow{u}\left(2;-3\right)\) là VTPT
đường thẳng \(x-y+5=0\) có \(\overrightarrow{n}\left(1;-1\right)\) là VTPT
a,khi PT y=ax+b //với trục Oy =) y=0
ta có PT 0=ax+b
vì PtT đi qua điểm E(-5;4) =) x=-5
ta có PT 0=-5a+b
b tương tự
2.đường thẳng ax+b=y // y=1/2x
=)a=a'
b khác b'
=)y=1/2x+b , b khác 0
giao điểm đường thẳng y=.. và y=.. là(gọi tạm là PT1,PT2)
1/2x+1=5x+3
....
x=-4/9
y=1/2x-4/9 +1=7/9
vậy PT1 và PT2 giao tại I(-4/9,7/9)
vì đg thẳng y=1/2x+b đi qua I nên thay x=-4/9 y=7/9 ta có
7/9=1/2x-4/9+b
b=1
vậy PT là y=1/2x+1
a, Đths đi qua \(A\left(-1;-3\right)\Leftrightarrow-3=-a+b\left(1\right)\)
Đths đi qua \(B\left(2;3\right)\Leftrightarrow3=2a+b\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy đths là \(y=2a-1\)
b, Đths đi qua \(M\left(-3;4\right)\Leftrightarrow4=-3a+b\left(1\right)\)
Đths song song với Ox \(\Leftrightarrow y=b=4\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow a=0\)
Vậy đths là \(y=4\)
\left\{\begin{matrix}
\\
\end{matrix}\right.
Lời giải:
a)
$M$ thuộc ĐTHS nên: \(y_M=-2x_M+k(x_M+1)\)
\(\Leftrightarrow 3=-2(-2)+k(-2+1)\)
\(\Leftrightarrow k=1\)
b)
Ta viết lại hàm số ban đầu:
$y=-2x+k(x+1)=x(k-2)+k(d)$
Để $(d)$ song song với đt $y=\sqrt{2}x+2015$ thì:
\(\left\{\begin{matrix} k-2=\sqrt{2}\\ k\neq 2015\end{matrix}\right.\Leftrightarrow k=2+\sqrt{2}\)