
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0

Để hàm số đã cho đồng biến thì \(m^2-5m-6>0\)\(\Leftrightarrow m^2+m-6m-6>0\)\(\Leftrightarrow m\left(m+1\right)-6\left(m+1\right)>0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)>0\)
Trường hợp 1: \(\hept{\begin{cases}m+1>0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m>6\end{cases}}\Rightarrow m>6\)
Trường hợp 2: \(\hept{\begin{cases}m+1< 0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m< 6\end{cases}}\Rightarrow m< -1\)
Vậy để hàm số đã cho đồng biến thì \(m>6\)hoặc \(m< -1\)
Để hàm số đã cho nghịch biến thì \(m^2-5m-6< 0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)< 0\)
Trường hợp 1: \(\hept{\begin{cases}m+1< 0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>6\end{cases}}\)(loại vì m không thể vừa nhỏ hơn -1 lại vừa lớn hơn 6)
Trường hợp 2: \(\hept{\begin{cases}m+1>0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 6\end{cases}}\Rightarrow-1< m< 6\)
Vậy để hàm số đã cho nghịch biến thì \(-1< m< 6\)

a, \(\left\{{}\begin{matrix}m\ge0\\\sqrt{m}\ne\sqrt{5}\Leftrightarrow m\ne5\end{matrix}\right.\)
b, Để là hàm số đồng biến thì:\(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}>0\Rightarrow\sqrt{m}+\sqrt{5}>0\Leftrightarrow m>5\)

a) Trên mặt phẳng tọa độ Oxy. Với hàm số y = 2x cho x = 1 ta được y = 2, điểm A(1; 2) thuộc đồ thị y = 2x. Với hàm số y = -2x cho x = 1 ta được y = -2, điểm B(1; -2) thuộc đồ thị hàm số y = -2x, nên đường thẳng OB là đồ thị của hàm số y = -2x.
b) Ta có O(x1 = 0, y1 = 0) và A(x2 = 1, y2 = 2) thuộc đồ thị hàm số y = 2x, nên với x1 < x2 ta được f(x1) < f(x2).
Vậy hàm số y = 2x đồng biến trên R.
Lại có O(x1 = 0, y1 = 0) và B(x3 = 1, y3 = -2) thuộc đồ thị hàm số y = -2x, nên với x1 < x3 ta được f(x1) < f(x3).
Vậy hàm số y = -2x nghịch biến trên R.
a) Đồ thị củahàm số y = 2x là đường thẳng đi qua O và điểm A(1; 2).
Đồ thị của hàm số y = -2x là đường thẳng đi qua O và điểm B(1; -2).
b) Hàm số y = 2x đồng biến vì khi x tăng lên thì y tương ứng tăng lên.
Hàm số y = -2x nghịch biến vì khi x tăng lên thì y tương ứng giảm đi.
y = 2x | -1 | 0 | 1 | 2 |
y = -2x | -2 | 0 | 2 | 4 |
y = -2x | 2 | 0 | -2 | -4 |
Hàm số y = 2 + 3 2 − 3 + 2 − 3 2 + 3 x − 5 có:
a = 2 + 3 2 − 3 + 2 − 3 2 + 3 = 2 + 3 2 + 2 − 3 2 2 − 3 2 + 3 = 4 + 4 3 + 3 + 4 − 4 3 + 3 4 − 3 = 14 > 0
nên là hàm số đồng biến trên
Đáp án cần chọn là: B