\(\frac{\sqrt{m}+\sqrt{3}}{\sqrt{m}+\sqrt{5}}x+2018\)

a, tìm m để hàm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a, \(\left\{{}\begin{matrix}m\ge0\\\sqrt{m}\ne\sqrt{5}\Leftrightarrow m\ne5\end{matrix}\right.\)

b, Để là hàm số đồng biến thì:\(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}>0\Rightarrow\sqrt{m}+\sqrt{5}>0\Leftrightarrow m>5\)

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

2: m^2-m+1

=m^2-m+1/4+3/4

=(m-1/2)^2+3/4>=3/4>0 với mọi m

=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R

9 tháng 6 2021

Đk: m \(\ge\)0; \(m\ne9\)

Để hàm số \(y=\frac{-2}{\sqrt{m}-3}x+2\)luôn nghịch biến <=> \(\frac{-2}{\sqrt{m}-3}< 0\)

<=> \(\sqrt{m}-3>0\) (vì -2 <0)

<=> \(m>9\)

Vậy ...

21 tháng 10 2018

Để là hàm số bậc nhất:\(\frac{1}{\sqrt{m-1}}-1\ne0\)    (đK: m>1)

\(\Leftrightarrow\sqrt{m-1}\ne1\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)

Vậy  m>1 và m khác 2

Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)

a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)

b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)

Bài 2 : 

Để hàm số đồng biến thì hệ số \(a>0\)

Để hàm số nghịch biến thì hệ số \(a< 0\)

Gợi ý z tư làm nha