\(y=-x^2\) và đường thẳng (d): \(y=k\left(x+1\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 7 2019

Phương trình hoành độ giao điểm:

\(x^2+kx+k-12=0\)

Gọi a; b lần lượt là hoành độ của A và B (\(a< b\))

Theo định lý Viet: \(\left\{{}\begin{matrix}a+b=-k\\ab=k-12\end{matrix}\right.\)

\(A\left(a;-a^2\right);B\left(a;-b^2\right)\Rightarrow M\left(0;-a^2\right);N\left(0;-b^2\right)\)

Gọi O là gốc tọa độ, theo định lý Pitago ta có:

\(IN^2=IO^2+ON^2=1+b^4\)

\(IM^2=OI^2+OM^2=1+a^4\)

\(MN^2=\left(OM-ON\right)^2=\left(a^2-b^2\right)^2\)

\(\Rightarrow\left(a^2-b^2\right)^2+6=1+a^4+1+b^4\)

\(\Leftrightarrow-2a^2b^2=-4\Rightarrow a^2b^2=2\Rightarrow ab=\pm\sqrt{2}\)

\(\Rightarrow k-12=\pm\sqrt{2}\Rightarrow k=12\pm\sqrt{2}\)

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

13 tháng 3 2022

a)Hoành độ giao điểm của (P)và (d) là:

        \(\frac{1}{2}x^2=x+4\)

\(\Leftrightarrow x^2=2x+8\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)

Thay \(x=-2\)vào (d) ta được:

     \(y=-2+4=2\)

Thay \(x=4\)vào (d)ta được:

    \(y=4+4=8\)

Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)

b)Mk ko bt làm

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

21 tháng 12 2021

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)

Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)

Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có : 

\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)

mà a + b + c = 0 => 2 + 2 - 4 = 0 

vậy pt có 2 nghiệm 

\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

20 tháng 12 2021

one cộng one bằng two

two cộng one bằng three ok

9 tháng 6 2019

a) Phương trình hoành độ giao điểm của (d) và (P) là

           \(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)

Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)

Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)

Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m

Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)

b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:

\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)

Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)

     \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)

Vậy...........................

9 tháng 6 2019

a/

hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình

\(x^2-\left(m-1\right)x-4=0\)

den ta = \(\left(m-1\right)^2+16>0\forall m\)

=> phương trình luôn có 2 nghiệm phân biệt với mọi m

b/

vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p ) 

=> \(y_1=x_1^2\)

    \(y_2=x_2^2\)

theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)

ta có \(y_1+y_2=y_1.y_2\)

<=> \(x_1^2+x_2^2=x_1^2x_2^2\)

<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)

<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)

<=> \(m^2-2m+1+8-16=0\)

<=> \(m^2-2m-7=0\)

<=>\(\left(m-1\right)^2-8=0\)

<=> \(\left(m-1\right)^2=8\)

<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)

<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

CHÚC BẠN HỌC TỐT

9 tháng 6 2020

Đây bạn nhé

9 tháng 6 2020

Sao ko đăng đc ảnh lên nhỉ?