Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thế \(x=2,x=\frac{1}{2}\)thì được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)
......................?
mik ko biết
mong bn thông cảm
nha ................
Ta có : \(\left(x-1\right)f\left(x\right)+f\left(\frac{1}{x}\right)=\frac{1}{x-1}\) (1)
Thay x bởi \(\frac{1}{x}\)thì đẳng thức thành :
\(\left(\frac{1}{x}-1\right)f\left(\frac{1}{x}\right)+f\left(x\right)=\frac{1}{\frac{1}{x}-1}\)
Hay : \(\frac{1-x}{x}f\left(\frac{1}{x}\right)+f\left(x\right)=\frac{x}{1-x}\) (2)
Nhân \(\frac{1-x}{x}\)vào hai vế của (1), ta được :
\(\frac{-x^2+2x-1}{x}f\left(x\right)+\frac{1-x}{x}f\left(\frac{1}{x}\right)=-\frac{1}{x}\) (3)
Lấy (2) trừ đì (3) theo từng vế, ta được :
\(\left[1-\frac{-x^2+2x-1}{x}\right]f\left(x\right)=\frac{x}{1-x}+\frac{1}{x}\)
Suy ra : \(f\left(x\right)=\frac{1}{1-x}\)
Lời giải:
a)
\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)
\(f(0)=0^2=0\)
\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)
b)
\(2f(a)=g(a)\)
\(\Leftrightarrow 2a^2=3-a\)
\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)
\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)
Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)
Xét với x = a thì ta có \(f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\) (1)
Xét với x = \(\frac{1}{a}\) thì ta có \(f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\)(2)
Từ (1) và (2) ta suy ra \(\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\\f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\left(1\right)\\2f\left(\frac{1}{a}\right)+4f\left(a\right)=\frac{2}{a^2}\left(2\right)\end{cases}}\)
Lấy (2) trừ (1) theo vế được \(3f\left(a\right)=\frac{2}{a^2}-a^2\Leftrightarrow f\left(a\right)=\frac{\frac{2}{a^2}-a^2}{3}=\frac{2-a^4}{3a^2}\)
Từ đó suy ra được \(f\left(x\right)=\frac{2-x^4}{3x^2}\)
Đến đây dễ dàng tính được f(2)
Mình kí hiệu (1) (2) hai lần , bạn sửa lại chỗ đó nhé ^^