\(f\left(x\right)=\frac{2015}{x^2+2x}\) . tính S= f(1)+f(2)+f(3)+...+f(2015)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2015

Ta có f(x) = 2015/[x(x + 2)]

=> f(1) = 2015/(1.3) = (2015/2)(1/1 - 1/2)

     f(2) = 2015/(2.4) = (2015/2)(1/2 - 1/4)

     f(3) = 2015/(3.5) = (2015/2)(1/3 - 1/5)

.........................................

=> S = f(1)+f(2)+f(3)+...+f(2015)

        = (2015/2)(1 + 1/2 - 1/2016 - 1/2017)

10 tháng 11 2017

Ta thấy \(2m^2-5m+7=2\left(m^2-\frac{5}{2}m+\frac{25}{16}\right)+\frac{31}{8}=2\left(m-\frac{5}{4}\right)^2+\frac{31}{8}>0\)

Vậy nên hàm số \(y=f\left(x\right)\) là hàm số đồng biến.

Ta thấy \(1-\sqrt{2015}>1-\sqrt{2017}\Rightarrow f\left(1-\sqrt{2015}\right)>f\left(1-\sqrt{2017}\right)\)

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)

4 tháng 4 2015

Bài 1

Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)

Tương tự như trên ta được

S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100

   = 98 + 1/2 - 1/100

   = 9849/100

21 tháng 10 2015

Áp dụng đẳng thức sau (có thể chứng minh bằng cách nhân tung rút gọn):

\(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+...+a^1+1\right)\)

Áp dụng với \(a=x;\text{ }a=\frac{1}{x}...\)

21 tháng 10 2015

nhờ thằng lắm chuyện nó giải giùm cho

9 tháng 10 2016

Ta sẽ xét tính biến thiên của hàm số : 

Ta có \(f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4\)

\(f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3\)

\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]\)

\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)< 0\)

\(\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)< 0\Rightarrow f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)\)

20 tháng 9 2019

Ta sẽ xét tính biến thiên của hàm số : 

Ta có f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4f(x)=(x3−3x2+3x−1)+4=(x−1)3+4

f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3f(20162017​)−f(20152016​)=(20162017​−1)3−(20152016​−1)3

=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]=(20161​−20151​)[(20162017​−1)2+(20152016​−1)2+(20162017​−1)(20152016​−1)]

=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)&lt; 0=(20161​−20151​)(201621​+201521​+20161​.20151​)<0

\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)&lt; 0\Rightarrow f\left(\frac{2017}{2016}\right)&lt; f\left(\frac{2016}{2015}\right)⇒f(20162017​)−f(20152016​)<0⇒f(20162017​)<f(20152016​)

16 tháng 10 2016

\(8f\left(2x+3\right)=8x^3+36x^2+54x+27-3\left(4x^2+12x+9\right)-25\left(2x+3\right)+115=\left(2x+3\right)^3-3\left(2x+3\right)^2-25\left(2x+3\right)+115\)
\(\Rightarrow f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\)
ĐẾn đây ai làm tiếp hộ vs 

16 tháng 10 2016

Ta có: \(8.f\left(2x+3\right)=8x^3+24x^2-32x+40\)
                        \(=\left(2x+3\right)^3-3\left(2x+3\right)-25\left(2x+3\right)+115\)
Đặt \(2x+3=X\)ta có: \(8f\left(X\right)=X^3-3X-25X+115\)
   Vậy công thức của hàm f(x ) là: \(f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\).
Ta có: 
 \(-f\left(\sqrt[3]{2013}\right)=-\frac{\left(\sqrt[3]{2013}\right)^3-3.\left(\sqrt[3]{2013}\right)^2-25\sqrt[3]{2013}+115}{8}\).
Các bạn làm tiếp và kiểm tra lại phần tính toán giúp mình nhé !