Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f(3)=√1+3=2f′(x)=12√1+x⇒f′(3)=12√1+3=14f(3)=1+3=2f′(x)=121+x⇒f′(3)=121+3=14
Suy ra:
f(3)+(x−3)f′(3)=2+x−34=5+x4
TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) C = (-4.3, -9.26) C = (-4.3, -9.26) C = (-4.3, -9.26) D = (11.06, -9.26) D = (11.06, -9.26) D = (11.06, -9.26) F = (10.88, -9.14) F = (10.88, -9.14) F = (10.88, -9.14)
Lời giải:
a) Ta có f'(x) = 3x2 + 1, g(x) = 6x + 1. Do đó
f'(x) > g'(x) <=> 3x2 + 1 > 6x + 1 <=> 3x2 - 6x >0
<=> 3x(x - 2) > 0 <=> x > 2 hoặc x > 0 <=> x ∈ (-∞;0) ∪ (2;+∞).
b) Ta có f'(x) = 6x2 - 2x, g'(x) = 3x2 + x. Do đó
f'(x) > g'(x) <=> 6x2 - 2x > 3x2 + x <=> 3x2 - 3x > 0
<=> 3x(x - 1) > 0 <=> x > 1 hoặc x < 0 <=> x ∈ (-∞;0) ∪ (1;+∞).
\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).
Tham khảo:
Xét hàm số g(x) = f(x) − f(x + 0,5)
Ta có
g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)
g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)
(vì theo giả thiết f(0) = f(1)).
Do đó,
\(f\left(1\right)=3\Rightarrow a+b=3;f'\left(x\right)=a\Rightarrow f'\left(1\right)=a=\dfrac{1}{\sqrt{3}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{\sqrt{3}}\\a+b=3\end{matrix}\right.\Rightarrow...\)