\(f\left(x\right)=\sqrt{1+x}\)

Tính \(f\left(3\ri...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Ta có:

f(3)=√1+3=2f′(x)=12√1+x⇒f′(3)=12√1+3=14f(3)=1+3=2f′(x)=121+x⇒f′(3)=121+3=14

Suy ra:

f(3)+(x−3)f′(3)=2+x−34=5+x4



26 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) C = (-4.3, -9.26) C = (-4.3, -9.26) C = (-4.3, -9.26) D = (11.06, -9.26) D = (11.06, -9.26) D = (11.06, -9.26) F = (10.88, -9.14) F = (10.88, -9.14) F = (10.88, -9.14)

4 tháng 4 2017

Lời giải:

a) Ta có f'(x) = 3x2 + 1, g(x) = 6x + 1. Do đó

f'(x) > g'(x) <=> 3x2 + 1 > 6x + 1 <=> 3x2 - 6x >0

<=> 3x(x - 2) > 0 <=> x > 2 hoặc x > 0 <=> x ∈ (-∞;0) ∪ (2;+∞).

b) Ta có f'(x) = 6x2 - 2x, g'(x) = 3x2 + x. Do đó

f'(x) > g'(x) <=> 6x2 - 2x > 3x2 + x <=> 3x2 - 3x > 0

<=> 3x(x - 1) > 0 <=> x > 1 hoặc x < 0 <=> x ∈ (-∞;0) ∪ (1;+∞).



7 tháng 5 2016

Ta xét bảng sau đây :

x 1 2 x-1 2 x-2 f(x) 1-x 4-2x 5-3x x-1 4-2x 3-x x-1 2x-4 3x-5

Ta có ngay với \(x\ne1\) và \(x\ne2\)

\(f'\left(x\right)=\begin{cases}-3;x< 1\\-1;1< x< 2\\3;x>2\end{cases}\)

Bây giờ xét tại \(x=1\), ta có

\(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{3-\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{-\Delta x}{\Delta x}=-1\)

\(\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{5-3\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^-}\frac{-3\Delta x}{\Delta x}=-3\)

Như vậy \(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\)

Nghĩa là không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=1\)

Tương tự không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=2\)

 
7 tháng 5 2016

a. \(f\left(x\right)=x.e^x\)

   \(f'\left(x\right)=e^x+x.e^x\)

   \(f"\left(x\right)=e^x+e^x+x.e^x=2e^x+x.e^x\)   

   \(f^{\left(3\right)}\left(x\right)=2e^x+e^x+x.e^x=3e^x+x.e^x\)

b.Từ (a) ta đi đến công thức  (dự đoán)

                \(f^{\left(n\right)}\left(x\right)=ne^x+x.e^x\)     (1)

Chứng minh (1) bằng quy nạp như sau :

- (1) đã đúng với  \(n=1,2,3\)

- Giả sử (1) đã đúng đến n, ta phải chứng minh :

               \(f^{\left(n+1\right)}\left(x\right)=\left(n+1\right)e^x+x.e^x\)        (2)

Thật vậy , từ giả thiết quy nạp, ta có :

\(f^{\left(n+1\right)}\left(x\right)=\left(f^{\left(n\right)}\left(x\right)\right)'=\left(ne^x+x.e^x\right)'=ne^x+e^x+x.e^x=\left(n+1\right)e^x+x.e^x\)

Vậy (2) đúng. Theo nguyên lí quy nạp suy ra (1) đúng với mọi \(n=1,2,3....\)

Tóm lại, ta có với mọi \(n=1,2,3....\)

\(f^{\left(n\right)}\left(x\right)=ne^x+x.e^x\)

4 tháng 4 2017

Quan sát đồ thị ta thấy x → -∞ thì f(x) → 0; khi x → 3- thì f(x) → -∞;

khi x → -3+ thì f(x) x → +∞.

b) f(x) = = = 0.

f(x) = = = -∞ vì = > 0 và = -∞.

f(x) = = . = +∞
= = > 0 và = +∞.



4 tháng 4 2017

Giải bài 4 trang 176 sgk Đại Số 11 | Để học tốt Toán 11