K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Đáp án D

3 tháng 8 2019

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên với dãy số ( x n ) bất kì, x n ∈ K \   x 0 và x n   →   x 0  ta luôn có 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ định nghĩa suy ra f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n   )   >   1 kể từ một số hạng nàođó trởđi.

Nói cách khác, luôn tồn tạiít nhất một số x k ∈ K \   x 0 sao cho f ( x k )   >   1 .

31 tháng 10 2019

15 tháng 11 2018

Đáp án D

Cho hàm số f(x) xác định trên khoảng K chứa a. Hàm số f(x) liên tục tại x=a nếu 

10 tháng 3 2017

Chọn B.

Hàm số có nghĩa khi .

Vậy theo định lí ta có hàm số  liên tục trên khoảng (-∞; -3); (-3; -2) và (-2; +∞).

3 tháng 2 2017

Đặt u = π/2 - x thì u' = -1

Giải bài tập Toán 11 | Giải Toán lớp 11

Do cos⁡(π/2-x) = sin⁡x

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

12 tháng 8 2018

Chẳng hạn xét

Giải sách bài tập Toán 11 | Giải sbt Toán 11

3 tháng 4 2017

f''(-π/2) = -9, f''(0) = 0, f''(π/18) = -9/2