K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

\(a+b=3\Rightarrow a+(b-2)=1\Rightarrow b-2=1-a\)

Ta có:

\(f(x)=\frac{9^x}{9^x+3}\Rightarrow f(a)=\frac{9^a}{9^a+3}\) (1)

\(f(b-2)=f(1-a)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9^a\left(\frac{9}{9^a}+3\right)}\)

\(=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\) (2)

Từ (1),(2) suy ra \(f(a)+f(b-2)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=\frac{9^a+3}{9^a+3}=1\)

Đáp án A

24 tháng 8 2018

Chọn D

17 tháng 2 2024

Sao ra được chỗ dấu = thứ 2. 5ax^+(3b-6a)x+c-3b/√2x-3 á, thắc mắc

28 tháng 10 2018

Chọn A.

24 tháng 5 2017

Đáp án B

21 tháng 9 2018




Chọn B

20 tháng 4 2017

1 tháng 12 2019

4 tháng 8 2018

Đáp án A

29 tháng 9 2018

Bảng biến thiên:

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị ( hình thang trên ).

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

* Khảo sát hàm số Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

+ Tập xác định: D = R\{0}.

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Đường thẳng a = 0 là tiệm cận đứng của đồ thị hàm số.

+ Lại có: Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Do đó, đường thẳng P(a) =1 là tiệm cận ngang của đồ thị hàm số.

+ Đạo hàm: Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Do đó hàm số này nghịch biến trên tập xác định.

Bảng biến thiên

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị hàm số

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D.