K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)

b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)

c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)

d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)

                                           \(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)

14 tháng 5 2018

a,

4x - 7 > 0

↔ 4x > 7

↔ x > \(\dfrac{7}{4}\)

Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }

b,

-5x + 8 > 0

↔ 8 > 5x

\(\dfrac{8}{5}\) > x

Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }

c,

9x - 10 ≤ 0

↔ 9x ≤ 10

↔ x ≤ \(\dfrac{10}{9}\)

Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }

d,

( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10

↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10

↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x

↔ -5 ≤ 5x

↔ -1 ≤ x

Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}

28 tháng 2 2016

a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5

      Vậy x = 1 , x = -5

b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1 

                                                                          hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5

      Vậy x > 1 hoặc x < -5

c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí

                                                                          hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1

      Vậy -5 < x < 1

21 tháng 3 2016

Ta có:

\(f\left(1\right).f\left(-1\right)=\left(a+b\right).\left(-a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(-a+b\right)=\left(a+b\right)^2\)

\(\Rightarrow-a+b=a+b\)

\(\Rightarrow a=-a\)

\(a\ne0\) thì làm sao có a thỏa mãn được?

21 tháng 3 2016

Trần Thùy Dung ko biết thì đừng có làm. 5 - 3a - 3b = 5. Bài này trong violympic.

31 tháng 3 2016

Câu 1 : 

Đk: \(x\ge1\) 

\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)

\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)

với x= 5 thoản mãn điều kiện, x=145 loại

Vậy \(S=\left\{5\right\}\)

8 tháng 4 2016

Dễ mà bn:

\(\frac{x}{y}=4=>x=4y\)

Ta có: xy=9

<=>(4y).y=9

<=>4y2=9

<=>\(y^2=\frac{9}{4}=\frac{3^2}{2^2}=\left(\frac{3}{2}\right)^2=\left(-\frac{3}{2}\right)^2\)

Do đó \(y=\frac{3}{2}\) hoặc \(y=-\frac{3}{2}\)

+)y=3/2 thì x=6 (TM)

+)y=-3/2 thì x=-6 (loại)

Vậy (x;y)=(6;3/2)
 

8 tháng 4 2016

Ta có x > = 0
Xét TH1 : x > 0
Ta có Ư(9) = { -1;-3;-9;1;3;9}
Vì  x > 0 → ta loại bỏ -1;-3;-9
Nếu x = 9 → y = 9/4 mà 9 . 9/4 > 9 (loại)
Nếu x = 3 → y = 3/4 mà 3 . 3/4 < 9 (loại)
Nếu x = 1 → y = 1/3 mà 1 . 1/3 < 9 (loại)
Xét TH2 : x = 0
Nếu x = 0 → y = 0 mà 0 . 0 < 9 (loại)
Vậy số cặp thoã mãn x/y = 4; xy = 9 (x > = 0) là 0 

19 tháng 4 2016

Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0  (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k

28 tháng 9 2015

ta có \(y'=\frac{m^2-9}{\left(x+m\right)^2}\) để hàm số đồng biến trên \(\left(2;+\infty\right)\) với m khác 3 thì y'>0 với mọi \(x\in\left(2;+\infty\right)\)

\(\Rightarrow m^2-9>0\) \(\Rightarrow m\in\left(-\infty;3\right)\cup\left(3;+\infty\right)\)

vậy ta đc đk của m

16 tháng 4 2017

mấy bn giúp mk với,pleaseeeeeeeeeeeeee

22 tháng 4 2016

Có:

\(f\left(x_1\right)=ax_1+b=0\)

\(f\left(x_2\right)=ax_2+b=0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=0-0\)

\(\Rightarrow a\left(x_1-x_2\right)=0\)

\(x_1\ne x_2\Rightarrow x_1-x_2\ne0\)

\(\Rightarrow a=0\)

\(\Rightarrow f\left(x_1\right)=0=0+b\Rightarrow b=0\)

Như vậy với mọi giá trị của x thì đa thức trên luôn bằng 0.

Vậy f(x) là đa thức 0.

 

11 tháng 1 2017

Từ \(f\left(x\right)+f\left(\frac{1}{x}\right)=x^2\); lần lượt thay \(x=2\)\(x=\frac{1}{2}\) vào, ta có:

\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\Leftrightarrow3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\)

Giải hệ phương trình với 2 ẩn \(f\left(2\right)\)\(f\left(\frac{1}{2}\right)\)

Tìm được \(f\left(2\right)=\frac{-13}{32}\)

12 tháng 1 2017

Ta có \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\) (1)

Thay \(x\rightarrow\frac{1}{x}\) được \(f\left(\frac{1}{x}\right)+3f\left(x\right)=\frac{1}{x^2}\)

\(\Leftrightarrow3f\left(\frac{1}{x}\right)+9f\left(x\right)=\frac{3}{x^2}\) (2)

Lấy (2) trừ (1) theo vế : \(8f\left(x\right)=\frac{3}{x^2}-x^2\)

\(\Leftrightarrow f\left(x\right)=\frac{1}{8}\left(\frac{3}{x^2}-x^2\right)\)

Vậy f(2) = -13/32