Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :
\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)
- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị
- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\)
hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép
\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)
\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)
\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)
Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị
Ta có : \(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left(2x^2+6mx+3\left(m+1\right)\right)\)
\(\Rightarrow y'=0\Leftrightarrow x=0\) hoặc
\(\Leftrightarrow f\left(x\right)=2x^2+6mx+3m+3=0\)
a) Hàm số có 3 cực trị khi và chỉ khi \(f\left(x\right)\) có 2 nghiệm phân biệt khác 0
\(\Leftrightarrow\begin{cases}\Delta'=3\left(3m^2-2m-2\right)>0\\f\left(0\right)\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< \frac{1-\sqrt{7}}{3}\cup m>\frac{1+\sqrt{7}}{3}\\m\ne-1\end{cases}\)
b) Hàm số chỉ có cực tiểu mà không có cực đại
\(\Leftrightarrow\) hàm số không có 3 cực trị \(\Leftrightarrow\frac{1-\sqrt{7}}{3}\le m\le\frac{1+\sqrt{7}}{3}\)
Do đó hàm số f(|x|) có 3 điểm cực trị tại x= 2; x= -2 và x= 0
Chọn B.
a) Xét hàm số \(y=ax^4+bx^2+c\)
Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)
\(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)
Đồ thị hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)
Với điều kiện (*) thì đồ thị có 3 điểm cực trị là :
\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)
Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.
Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)
Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)
b) Ta có yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)
\(\Leftrightarrow m=2\pm2\sqrt{2}\)
Đáp án A
Phương pháp:
Tính và xét dấu của f(x2)' từ đó tính số cực trị.
Cách giải: