K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
$f(-2)=\sqrt{2(-2)^2+1}=3$

7 tháng 2 2018

Ta có \(\dfrac{1}{\sqrt{3x+1}}=\dfrac{f'\left(x\right)}{f\left(x\right)}\)

\(\Rightarrow\int\dfrac{1}{\sqrt{3x+1}}dx=\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx\)

\(\Rightarrow\dfrac{1}{3}\int\left(3x+1\right)^{-\dfrac{1}{2}}d\left(3x+1\right)=\int\dfrac{\left[f\left(x\right)\right]}{f\left(x\right)}\)

\(\Rightarrow\dfrac{2}{3}.\sqrt{3x+1}+C=\ln\left|f\left(x\right)\right|=\ln\left|f\left(x\right)\right|\)

\(\Rightarrow f\left(x\right)=e^{\dfrac{2}{3}.\sqrt{3x+1}+C}\)

Mặt khác ta có f(1) = \(e^{\dfrac{4}{3}+C}=1\Rightarrow C=-\dfrac{4}{3}\)

Vậy nên f(x) = \(e^{\dfrac{2}{3}.\sqrt{3x+1}-\dfrac{4}{3}}\)

Từ đó ta tính được f(5) = \(e^{\dfrac{4}{3}}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

NV
2 tháng 5 2019

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\sqrt{x+3}-\sqrt{2x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow\sqrt{x+3}=\sqrt{2x-1}+\sqrt{3x-2}\)

\(\Leftrightarrow x+3=2x-1+3x-2+2\sqrt{\left(2x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow3-2x=\sqrt{\left(2x-1\right)\left(3x-2\right)}\) (\(x\le\frac{3}{2}\))

\(\Leftrightarrow\left(3-2x\right)^2=\left(2x-1\right)\left(3x-2\right)\)

\(\Leftrightarrow4x^2-12x+9=6x^2-7x+2\)

\(\Leftrightarrow2x^2+5x-7=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{7}{2}< \frac{2}{3}\left(l\right)\end{matrix}\right.\)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)