Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=12:6\Rightarrow x=2\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)\(=\frac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Khi đó:\(\frac{2\times2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Ta có : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{5+7}=\frac{2x+3y-1}{12}\)
Suy ra ; \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Th1 : 2x + 3y - 1 = 0
=> 2x + 1 = 0 ; 3y - 2 = 0
=> 2x = -1 ; 3y = 2
=> x = -1/2 ; y = 2/3
Th2 : 6x = 12
=> x = 2
Thay x = 2 vào ta có : \(\frac{2.2+1}{5}=\frac{3y-2}{7}\)
=> \(\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
Vậy .......................
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
=>\(6x=12\)
\(x=12:6\)
\(x=2\)
Thay x = 2 vào \(\frac{2x+1}{5}=\frac{3y-2}{7}\), ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)
<=>\(\frac{5}{5}=\frac{3y-2}{7}\)
<=>\(\frac{3y-2}{7}=1\)
<=>\(3y-2=7\)
<=>\(3y=7+2\)
<=>\(3y=9\)
<=>\(y=9:3\)
<=>\(y=3\)
Vậy x =2 ; y=3
Theo dãy tỉ số bằng nhau, ta có :
(2x+1) / 5=(3y-2 ) / 7 = [(2x+1)+(3y-2)] / ( 5 + 7) = (2x+1+3y-2) / 12 = (2x+3y-1) / 12
= (2x+3y-1)/(6x)
Thế thì 6 x = 12
x = 2
Lại có (2x+1) / 5=(3y-2 ) / 7
Hay (2. 2 +1) / 5=(3y-2 ) / 7
5 / 5 = (3y-2 ) / 7
1 = =(3y-2 ) / 7
3y-2 = 7
3y = 9
y = 3
Vậy x = 2 ; y = 3
Ta có : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Áp dụng tc dãy tỉ số bằng nhau ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(=>\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}=>12=6x=>x=2\)
\(=>\frac{2.2+1}{5}=\frac{3y-2}{7}=>\frac{3y-2}{7}=1=>3y-2=7=>3y=9=>y=3\)
Vậy x=2,y=3
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y+1}{5+7}=\frac{2x+3y+1}{12}\)
TH1 :Nếu \(2x+3y+1=0\Rightarrow\hept{\begin{cases}2x+1=0\\3x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{3}\end{cases}}}\)
TH2 :Nếu \(2x+3y+1\ne0\Rightarrow6x=12\Rightarrow x=2\Rightarrow\frac{2.2+2}{5}=\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow y=3\)
Vậy \(\left(x,y\right)\in\left\{\left(2;3\right)\left(-\frac{1}{2};\frac{2}{3}\right)\right\}\)
Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Dựa theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
-> x = \(12.\dfrac{3}{2}=18\)
y =\(12.\dfrac{4}{3}=16\)
z =\(12.\dfrac{5}{4}\) = 15
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=>6x=12
=>x=2
=>\(\frac{3y-2}{7}=\frac{2.2+1}{5}=1\Rightarrow3y-2=7\Rightarrow y=3\)
Vậy x+y=2+3=5