Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)
\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)
\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)
\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)
\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)
Ta có:
\(\left(a^2+b^2\right)^2=a^4+b^4+2a^2b^2\)=> \(a^2b^2=\frac{1}{4}\)
\(a^2+b^2=\frac{1}{2^0}\)
\(a^4+b^4=\frac{1}{2^1}\)
\(a^6+b^6=\left(a^4+b^4\right)\left(a^2+b^2\right)-a^2b^2\left(a^2+b^2\right)=\frac{1}{2}.1-\frac{1}{4}.1=\frac{1}{4}=\frac{1}{2^2}\)
\(a^8+b^8=\left(a^6+b^6\right)\left(a^2+b^2\right)-a^2b^2\left(a^4+b^4\right)=\frac{1}{4}.1-\frac{1}{4}.\frac{1}{2}=\frac{1}{8}=\frac{1}{2^3}\)
...
Như vậy chúng ta sẽ đoán được: \(a^{2n+2}+b^{2n+2}=\frac{1}{2^n}\)(1) với n là số tự nhiên.
Chúng ta chứng minh (1) quy nạp theo n.
+) Với n = 0; có: \(a^2+b^2=\frac{1}{2^0}=1\)đúng
=> (1) đúng với n = 1
+) Giả sử (1) đúng cho tới n
khi đó: \(a^{2n+2}+b^{2n+2}=\frac{1}{2^n}\)
+) Ta chứng minh (1) đúng với n + 1
Ta có: \(a^{2\left(n+1\right)+2}+b^{2\left(n+1\right)+2}=a^{2n+4}+b^{2n+4}\)
\(=\left(a^{2n+2}+b^{2n+2}\right)\left(a^2+b^2\right)-a^2b^2\left(a^{2n}+b^{2n}\right)\)
\(=\frac{1}{2^n}.1-\frac{1}{4}.\frac{1}{2^{n-1}}=\frac{1}{2^n}-\frac{1}{2^{n+1}}=\frac{1}{2^{n+1}}\)
=> (1) đúng với n + 1
Vậy (1) đúng với mọi số tự nhiên n.
Do đó:
\(P=a^{2020}+b^{2020}=a^{2.1009+2}+b^{2.1009+2}=\frac{1}{2^{1009}}\)
1. Ta thấy:
\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)
\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)
\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)
$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)
Từ $(1);(2)$ ta có đpcm.
Câu 2:
Điều kiện đã cho tương đương với:
$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$
$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$
$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$
$\Leftrightarrow 2a^2+2b^2=3a^2-ab$
$\Leftrightarrow a^2-ab-2b^2=0$
$\Leftrightarrow (a+b)(a-2b)=0$
$\Leftrightarrow a=-b$ hoặc $a=2b$
Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$
Khi đó:
$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$
2.
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\)
\(\Rightarrow yz=-\frac{1}{2}-x\left(y+z\right)=-\frac{1}{2}-x\left(-x\right)=x^2-\frac{1}{2}\)
Ta có:
\(x+y=-z\Leftrightarrow\left(x+y\right)^5=-z^5\)
\(\Leftrightarrow x^5+y^5+z^5=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(\Leftrightarrow x^5+y^5+z^5=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(\Leftrightarrow P=-5xy\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(\Leftrightarrow P=-5xy\left[-z^3+xyz\right]=5xyz\left(z^2-xy\right)\)
\(\Leftrightarrow P=\frac{5}{2}xyz\left(z^2+\left(x+y\right)^2-2xy\right)=\frac{5}{2}xyz\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow P=\frac{5}{2}xyz=\frac{5}{2}x\left(x^2-\frac{1}{2}\right)\)
\(\Rightarrow P^2=\frac{25}{4}x^2\left(\frac{1}{2}-x^2\right)^2=\frac{25}{8}.2x^2\left(\frac{1}{2}-x^2\right)\left(\frac{1}{2}-x^2\right)\)
\(\Rightarrow P^2\le\frac{25}{8}\left(\frac{2x^2+\frac{1}{2}-x^2+\frac{1}{2}-x^2}{3}\right)^3=\frac{25}{216}\)
\(\Rightarrow P\le\frac{5\sqrt{6}}{36}\)
\(P_{max}=\frac{5\sqrt{6}}{36}\) khi \(x=-\frac{1}{\sqrt{6}}\)
3.
Xét \(Q=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(Q^2=\frac{a^4}{b^2}+\frac{2a^2b}{c}+c^2+\frac{b^4}{c^2}+\frac{2b^2c}{a}+a^2+\frac{c^4}{a^2}+\frac{2c^2a}{b}+b^2-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow Q^2\ge4\sqrt[4]{\frac{a^4.a^2b.a^2b.c^2}{b^2c^2}}+4\sqrt[4]{\frac{b^4.b^2c.c^2c.a^2}{c^2a^2}}+4\sqrt[4]{\frac{c^4.c^2a.c^2a.b^2}{a^2b^2}}-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow Q^2\ge3\left(a^2+b^2+c^2\right)\Rightarrow Q\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Đặt \(x=a^2+b^2+c^2\ge\frac{1}{3}\)
\(\Rightarrow P\ge2020\sqrt{3x}+\frac{1}{3x}=\sqrt{3x}+\sqrt{3x}+\frac{1}{3x}+2018\sqrt{3x}\)
\(\Rightarrow P\ge3\sqrt[3]{\frac{3x}{3x}}+2018.\sqrt{3.\frac{1}{3}}=2021\)
\(P_{min}=2021\) khi \(a=b=c=\frac{1}{3}\)
TL
Mik ko chắc chắn lắm nha sai thì t i k cho mik'
Vì các số đều là tử số 1 lên ta xét mẫu số thì thấy bé hơn'
Hok tốt
áp dụng AM-GM TA CÓ (GỌI BIỂU THỨC LÀ P NHÁ)
\(A^2+B^2+2=A^2+1+B^2+1=>2\left(A+B\right)\)
TƯƠNG TỰ VỚI MẤY MẪU KIA TA ĐƯỢC
P\(< =\frac{1}{2}\left(\frac{1}{A+B}+\frac{1}{B+C}+\frac{1}{A+C}\right)\)=\(\frac{1}{2}\left(\frac{\left(A+B\right)\left(B+C\right)+\left(B+C\right)\left(A+C\right)+\left(A+B\right)\left(A+C\right)}{\left(C+A\right)\left(B+C\right)\left(A+B\right)}\right)\)
=\(\frac{3\left(AB+AC+BC\right)+A^2+B^2+C^2}{\left(A+B\right)\left(B+C\right)\left(A+C\right)}\)
=\(\frac{\left(a+b+c\right)^2+ab+bc+ac}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
ta có \(ab+ac+bc< =\frac{\left(a+b+c\right)^2}{3}\)
Với ab = 1 , a + b ¹ 0, ta có:
P = a 3 + b 3 ( a + b ) 3 ( a b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 ( a b ) 2 + 6 ( a + b ) ( a + b ) 5 ( a b ) = a 3 + b 3 ( a + b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) ( a + b ) 5 = a 2 + b 2 − 1 ( a + b ) 2 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a + b ) 2 + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a 2 + b 2 + 2 ) + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 ) 2 + 4 ( a 2 + b 2 ) + 4 ( a + b ) 4 = ( a 2 + b 2 + 2 ) 2 ( a + b ) 4 = ( a 2 + b 2 + 2 a b ) 2 ( a + b ) 4 = ( a + b ) 2 2 ( a + b ) 4 = 1
Vậy P = 1, với ab = 1 , a+b ¹ 0.