Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{6}{13}< \frac{p}{q}\) => 0< 13p-6q
=> 1\(\le\) 13p-6q
=> 1.15 \(\le\)15(13p-6q)
=> 15 \(\le\) 195p-90q (1)
CMTT, ta có: 13 \(\le\) 91q- 195p (2)
Từ (1) và (2) => 195p-90q+91q-195p \(\ge\) 15+13=28
=> q \(\ge\) 28
=> ĐPCM
ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3
do đóa/a+2b=b/b+2c=c/c+2a=1/3
hay a chia 3 = a+2b
b chia 3 =b+2c
c chia 3 =c+2a
ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3
nen a+b+c chia het 3
Bài làm:
Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)
Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)
Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)
\(\Rightarrow a+b+c⋮3\)