Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)
⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0
Đến đây suy ra ĐPCM
Đẳng thức đã cho tương đương với
\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy+1\)
\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)
Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh
Ta có \(a^4+ab^3=2a^3b^2\)
Do a>0
=> \(a^3+b^3=2a^2b^2\)
<=> \(\frac{a}{b^2}+\frac{b}{a^2}=2\)
Đặt \(\frac{a}{b^2}=x;\frac{b}{a^2}=y\)(x,y là số hữu tỉ)
=>\(\hept{\begin{cases}x+y=2\\x.y=\frac{1}{ab}\end{cases}}\)=> \(\hept{\begin{cases}x=2-y\\xy=\frac{1}{ab}\end{cases}}\)
=> \(\sqrt{1-\frac{1}{ab}}=\sqrt{1-y\left(2-y\right)}=\sqrt{y^2-2y+1}=|y-1|\)là số hữu tỉ
=> ĐPCM
Vậy \(\sqrt{1-\frac{1}{ab}}\)là số hữu tỉ
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
\(a^3+b^3=2a^2b^2\Leftrightarrow\frac{a}{b^2}+\frac{b}{a^2}=2\)
Đặt \(\left\{{}\begin{matrix}\frac{a}{b^2}=x\\\frac{b}{a^2}=y\end{matrix}\right.\) \(\Rightarrow x;y\in Q\)
Ta được: \(\left\{{}\begin{matrix}x+y=2\\xy=\frac{1}{ab}\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, x và y là nghiệm:
\(t^2-2t+\frac{1}{ab}=0\)
\(\Delta'=1-\frac{1}{ab}\)
Do x;y hữu tỉ \(\Leftrightarrow\sqrt{\Delta'}\) hữu tỉ \(\Rightarrow\sqrt{1-\frac{1}{ab}}\) hữu tỉ
Fairy Tail bn tham khảo nè:
x, y , z hữu tỉ
√x + √y + √z hữu tỉ
- Nếu trong ba số √x , √y , √z có 1 số hữu tỉ , giả sử √x => √y + √z hữu tỉ
Đặt y = a/b; z = c/d đều hữu tỉ với a,b, c, d thuộc N *
√y + √z hữu tỉ => (√y + √z)² hữu tỉ => √(zy) hữu tỉ => √(ac/bd) hữu tỉ => ac/bd = (p/q)² => √(a/b) = p/q√(d/c) với p, q Є N*
=> √y + √z = √(a/b) + √(c/d) = p/q√(d/c) + √(c/d) = (pd + qc)/√(cd) hữu tỉ => √(cd) hữu tỉ => d√(c/d) = √(cd) hữu tỉ => √z = √(c/d) hữu tỉ => √y cung hữu tỉ
Vậy √x , √y , √z đều là số hữu tỉ
- Nếu cả √x , √y , √z đều là số vô tỉ
Đặt √x + √y + √z = p/q với p, q thuộc N* => x + y + 2√(xy) = (p/q)² - 2p/q √z + z =>
=> √(xy) + p/q√z hữu tỉ
Do xy hửu tỉ và (p/q)^2 z hữu tỉ nên có thể đặt xy = a/b và (p/q)^2 z = c/d
thì ta có √(a/b) + √(c/d) hữu tỉ. đến đây lí luận như trường hợp trên thì suy ra √(xy) và p/q√z hữu tỉ => √z hữu tỉ => mâu thuẫn với giả thiết √z vô tỉ
Vậy √x , √y , √z đều là số hữu tỉ
`````````````````````````````
Với bài 3 em có thể rút ngắn hơn bằng cách giả sử một trong ba số √x , √y , √z là số vô tỉ , ví dụ là √z, sau đó dùng cách lý luận ở trường hợp 2 suy ra √(xy) + p/q√z hữu tỉ, sau đó lại áp dụng lý luận như của trường hợp 1 để suy ra √z vô tỉ => trái giả thiết, tức là ko có số nào trong chứng là số vô tỉ cả. Đến đây bài toán đã dc chưng minh xong
```````````````````````````````````````...
Bài 4/ Đề của em ko đúng, phải thay dấu - bằng dấu + . Khi đó ta làm thế này
(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ca +(a^2+b^2-c^2)/2ab=1
<=> (b^2+c^2-a^2)/2bc - 1 +(a^2+c^2-b^2)/2ca - 1 + (a^2+b^2-c^2)/2ab + 1 = 0
<=> a[ (b-c)² - a²] + b[ ( a-c)² -b²] + c[ (a+b)² - c²] = 0
<=> a( a+b-c)(b-a-c) + b( a+b-c)(a-b-c) + c(a+b-c)(a+b+c) = 0
<=> (a+b-c) [ c(a+b+c) -a(a+c-b) - b(b+c-a)] = 0
<=> (a+b-c)[ c² -(a-b)²] = 0
<=> (a+b-c)(a+c-b)(b+c-a) = 0
nếu a + b = c =>(b^2+c^2-a^2)/2bc = 1 ; (a^2+c^2-b^2)/2ca = 1 và (a^2+b^2-c^2)/2ab = -1
xét tương tự cho các trường hợp a + c-b = 0 và b+c-a = 0 suy ra DPCM