K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b

⇔a3c2+b3a2+c3b2=b3c+c3a+a3b

⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)

⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)

⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0

⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0

Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0

Đến đây suy ra ĐPCM